387
Views
14
CrossRef citations to date
0
Altmetric
Review

Plasma and cellular pharmacokinetic considerations for the development and optimization of antitumor block copolymer micelles

, , , , PhD (Professor) & , PhD (Associate Professor)

Bibliography

  • Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 2009;138:214-23
  • Kedar U, Phutane P, Shidhaye S, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010;6:714-29
  • Huo M, Zhang Y, Zhou J, et al. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int J Pharm 2010;394:162-73
  • Lammers T, Kiessling F, Hennink WE, et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161:175-87
  • Xu Q, Liu Y, Su S, et al. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials 2012;33:1627-39
  • Zhang W, Shi Y, Chen Y, et al. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur J Pharm Biopharm 2010;75:341-53
  • Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 2009;61:768-84
  • Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 2007;99:1095-106
  • Shin HC, Cho H, Lai TC, et al. Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly(D, L-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. J Control Release 2012;163:93-9
  • Wang J, Wang Y, Liang W. Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles. J Control Release 2012;160:637-51
  • Zhao Y, Li J, Yu H, et al. Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG-PLLA-PMMD) as self-assembly micelle delivery system for paclitaxel. Int J Pharm 2012;430:282-91
  • Mu CF, Balakrishnan P, Cui FD, et al. The effects of mixed MPEG-PLA/Pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 2010;31:2371-9
  • Chen C, Johnston TD, Jeon H, et al. An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells. Int J Pharm 2009;366:133-9
  • Shin HC, Alani AW, Rao DA, et al. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release 2009;140:294-300
  • Xiao W, Chen X, Yang L, et al. Co-delivery of doxorubicin and plasmid by a novel FGFR-mediated cationic liposome. Int J Pharm 2010;393:119-26
  • Amadori D, Milandri C, Comella G, et al. A phase I/II trial of non-pegylated liposomal doxorubicin, docetaxel and trastuzumab as first-line treatment in HER-2-positive locally advanced or metastatic breast cancer. Eur J Cancer 2011;47:2091-8
  • Holback H, Yeo Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011;28:1819-30
  • Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 2009;6:1041-51
  • Lammers T, Subr V, Ulbrich K, et al. HPMA-based polymer therapeutics improve the efficacy of surgery, of radiotherapy and of chemotherapy combinations. Nanomedicine (Lond) 2010;5:1501-23
  • Zhou C, Zhang Y, Yu B, et al. Comparative cellular pharmacokinetics and pharmacodynamics of siRNA delivery by SPANosomes and by cationic liposomes. Nanomedicine 2013;9:504-13
  • Zhou F, Zhang J, Li P, et al. Toward a new age of cellular pharmacokinetics in drug discovery. Drug Metab Rev 2011;43:335-45
  • Ma HL, Jiang Q, Han S, et al. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol Imaging 2012;11:487-98
  • Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009;100:572-9
  • Florence AT. Pharmaceutical nanotechnology: more than size. Ten topics for research. Int J Pharm 2007;339:1-2
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 2012;161:152-63
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003;20:357-403
  • Dreher MR, Liu W, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006;98:335-44
  • Zhao J, Song S, Zhong M, et al. Dual-modal tumor imaging via long-circulating biodegradable core-crosslinked polymeric micelles. ACS Macro Lett 2012;1:150-3
  • Bansal R, Post E, Proost JH, et al. PEGylation improves pharmacokinetic profile, liver uptake and efficacy of interferon gamma in liver fibrosis. J Control Release 2011;154:233-40
  • Le Garrec D, Gori S, Luo L, et al. Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release 2004;99:83-101
  • Licciardi M, Campisi M, Cavallaro G, et al. Synthesis and characterization of polyaminoacidic polycations for gene delivery. Biomaterials 2006;27:2066-75
  • Gong C, Deng S, Wu Q, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 2013;34:1413-32
  • Wu Y, Chen W, Meng F, et al. Core-crosslinked pH-sensitive degradable micelles: a promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J Control Release 2012;164:338-45
  • Kang N, Perron ME, Prud’homme RE, et al. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett 2005;5:315-19
  • Yamamoto Y, Nagasaki Y, Kato Y, et al. Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. J Control Release 2001;77:27-38
  • O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev 2006;35:1068-83
  • Jiao Z, Wang X, Chen Z. Folate-conjugated methoxy poly (ethylene glycol)/poly (L-Alanine) amphiphilic block copolymeric micelles for targeted delivery of paclitaxel. Drug Deliv 2011;18:478-84
  • Yang TF, Chen CN, Chen MC, et al. Shell-crosslinked Pluronic L121 micelles as a drug delivery vehicle. Biomaterials 2007;28:725-34
  • Hu FQ, Wu XL, Du YZ, et al. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm 2008;69:117-25
  • Zou J, Zhang S, Shrestha R, et al. pH-Triggered reversible morphological inversion of orthogonally-addressable poly(3-acrylamidophenylboronic acid)-block-poly(acrylamidoethylamine) micelles and their shell crosslinked nanoparticles. J Polym Sci A Polym Chem 2012;3:3146-56
  • Elsabahy M, Samarajeewa S, Raymond JE, et al. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs. J Mater Chem B Mater Biol Med 2013;1:5241-55
  • Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 2011;63:152-60
  • Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer 2006;6:583-92
  • Nederman T, Acker H, Carlsson J. Penetration of substances into tumor tissue: a methodological study with microelectrodes and cellular spheroids. In Vitro 1983;19:479-88
  • Durand RE. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res 1981;41:3495-8
  • Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011;6:815-23
  • Jang SH, Wientjes MG, Lu D, et al. Drug delivery and transport to solid tumors. Pharm Res 2003;20:1337-50
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 2011;153:198-205
  • Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci 2008;29:57-61
  • Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 2008;60:1421-34
  • Ogawara K, Un K, Minato K, et al. Determinants for in vivo anti-tumor effects of PEG liposomal doxorubicin: importance of vascular permeability within tumors. Int J Pharm 2008;359:234-40
  • Monsky WL, Fukumura D, Gohongi T, et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 1999;59:4129-35
  • Bae Y, Nishiyama N, Fukushima S, et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005;16:122-30
  • Kim TH, Mount CW, Gombotz WR, et al. The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 2010;31:7386-97
  • Lee H, Fonge H, Hoang B, et al. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm 2010;7:1195-208
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347-60
  • Yahara T, Koga T, Yoshida S, et al. Relationship between microvessel density and thermographic hot areas in breast cancer. Surg Today 2003;33:243-8
  • Tong R, Hemmati HD, Langer R, et al. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 2012;134:8848-55
  • Tong R, Chiang HH, Kohane DS. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc Natl Acad Sci USA 2013;110:19048-53
  • Delehanty JB, Boeneman K, Bradburne CE, et al. Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Ther Deliv 2010;1:411-33
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008;130:98-106
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002;54:759-79
  • Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol 2014;44:515-25
  • Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release 2014. [Epub ahead of print]
  • Bastakoti BP, Wu KC, Inoue M, et al. Multifunctional core-shell-corona-type polymeric micelles for anticancer drug-delivery and imaging. Chemistry 2013;19(15):4812-17
  • Li X, Li P, Zhang Y, et al. Novel mixed polymeric micelles for enhancing delivery of anticancer drug and overcoming multidrug resistance in tumor cell lines simultaneously. Pharm Res 2010;27:1498-511
  • Kunjachan S, Blauz A, Mockel D, et al. Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur J Pharm Sci 2012;45:421-8
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014;5:77
  • Zhong Y, Meng F, Deng C, et al. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 2014;15:1955-69
  • Pan X, Lee RJ. Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin Drug Deliv 2004;1:7-17
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147-62
  • Varshosaz J, Hassanzadeh F, Sadeghi-Aliabadi H, et al. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles. Biomed Res Int 2014;2014:708593
  • Song N, Ding M, Pan Z, et al. Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery. Biomacromolecules 2013;14:4407-19
  • Tabatabaei Rezaei SJ, Abandansari HS, Nabid MR, et al. pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs. J Colloid Interface Sci 2014;425:27-35
  • Guo X, Li D, Yang G, et al. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl Mater Interfaces 2014;6:8549-59
  • Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 2004;58:327-41
  • Tsai WB, Lai HY, Lee JL, et al. Enhancement of the cytotoxicity and selectivity of doxorubicin to hepatoma cells by synergistic combination of galactose-decorated gamma-poly(glutamic acid) nanoparticles and low-intensity ultrasound. Langmuir 2014;30:5510-17
  • Zhong Y, Yang W, Sun H, et al. Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells. Biomacromolecules 2013;14:3723-30
  • Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 2006;27:2051-9
  • Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 2005;57:637-51
  • Sethuraman VA, Lee MC, et al. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm Res 2008;25:657-66
  • Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 2007;118:216-24
  • Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10:9-22
  • Di Minno G, Coppola A, Di Minno MN, et al. Glanzmann’s thrombasthenia (defective platelet integrin alphaIIb-beta3): proposals for management between evidence and open issues. Thromb Haemost 2009;102:1157-64
  • Curnis F, Arrigoni G, Sacchi A, et al. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 2002;62:867-74
  • Talelli M, Rijcken CJ, Oliveira S, et al. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Control Release 2011;151:183-92
  • Wang YC, Liu XQ, Sun TM, et al. Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J Control Release 2008;128:32-40
  • Wadajkar AS, Bhavsar Z, Ko CY, et al. Multifunctional particles for melanoma-targeted drug delivery. Acta Biomater 2012;8:2996-3004
  • Mickler FM, Vachutinsky Y, Oba M, et al. Effect of integrin targeting and PEG shielding on polyplex micelle internalization studied by live-cell imaging. J Control Release 2011;156:364-73
  • Kanwar JR, Roy K, Kanwar RK. Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 2011;46:459-77
  • Zhang Y, Hong H, Cai W. Tumor-targeted drug delivery with aptamers. Curr Med Chem 2011;18:4185-94
  • Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065-70
  • Taghdisi SM, Danesh NM, Sarreshtehdar Emrani A, et al. Targeted delivery of Epirubicin to cancer cells by PEGylated A10 aptamer. J Drug Target 2013;21:739-44
  • Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA 2010;107:17939-44
  • Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res 2010;70:8617-29
  • Hovanessian AG, Soundaramourty C, El Khoury D, et al. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One 2010;5:e15787
  • Fogal V, Sugahara KN, Ruoslahti E, et al. Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature. Angiogenesis 2009;12:91-100
  • Legrand D, Vigie K, Said EA, et al. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur J Biochem 2004;271:303-17
  • Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011;32:8010-20
  • Miura H, Onishi H, Sasatsu M, et al. Antitumor characteristics of methoxypolyethylene glycol-poly(DL-lactic acid) nanoparticles containing camptothecin. J Control Release 2004;97:101-13
  • Trimaille T, Mondon K, Gurny R, et al. Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides). Int J Pharm 2006;319:147-54
  • Zweers ML, Engbers GH, Grijpma DW, et al. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(DL-lactic-co-glycolic acid) nanoparticles. J Control Release 2006;114:317-24
  • Zhang L, Yang M, Wang Q, et al. 10-Hydroxycamptothecin loaded nanoparticles: preparation and antitumor activity in mice. J Control Release 2007;119:153-62
  • Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005;103:405-18
  • Bae Y, Fukushima S, Harada A, et al. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl 2003;42:4640-3
  • Bae Y, Jang WD, Nishiyama N, et al. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005;1:242-50
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47:113-31
  • Shim IK, Yook YJ, Lee SY, et al. Healing of articular cartilage defects treated with a novel drug-releasing rod-type implant after microfracture surgery. J Control Release 2008;129:187-91
  • Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009;71:431-44
  • Ganta S, Devalapally H, Shahiwala A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008;126:187-204
  • Gao GH, Li Y, Lee DS. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. J Control Release 2013;169:180-4
  • Lin W, Nie S, Xiong D, et al. pH-responsive micelles based on (PCL)2(PDEA-b-PPEGMA)2 miktoarm polymer: controlled synthesis, characterization, and application as anticancer drug carrier. Nanoscale Res Lett 2014;9:243
  • Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 2013;110:313-20
  • Jin ZH, Jin MJ, Jiang CG, et al. Evaluation of doxorubicin-loaded pH-sensitive polymeric micelle release from tumor blood vessels and anticancer efficacy using a dorsal skin-fold window chamber model. Acta Pharmacol Sin 2014;35:839-45
  • Lim EK, Huh YM, Yang J, et al. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 2011;23:2436-42
  • Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 2002;82:17-27
  • Bachelder EM, Beaudette TT, Broaders KE, et al. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc 2008;130:10494-5
  • Chen W, Meng F, Cheng R, et al. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 2010;142:40-6
  • Hiremath JG, Khamar NS, Palavalli SG, et al. Paclitaxel loaded carrier based biodegradable polymeric implants: preparation and in vitro characterization. Saudi Pharm J 2013;21:85-91
  • Lv L, Shen Y, Li M, et al. Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation. Biomed Res Int 2013;2013:507103
  • Koo H, Lee H, Lee S, et al. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb) 2010;46:5668-70
  • Xu P, Van Kirk EA, Zhan Y, et al. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew Chem Int Ed Engl 2007;46:4999-5002
  • Shen Y, Tang H, Radosz M, et al. pH-responsive nanoparticles for cancer drug delivery. Methods Mol Biol 2008;437:183-216
  • Yang Y, Yang D, Tang G, et al. Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience 2013;247:191-200
  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012;4:1399-440
  • Ballatori N, Krance SM, Notenboom S, et al. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009;390:191-214
  • Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 2009;16:1303-14
  • Sun H, Guo B, Cheng R, et al. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 2009;30:6358-66
  • Sun H, Guo B, Li X, et al. Shell-sheddable micelles based on dextran-SS-poly(epsilon-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules 2010;11:848-54
  • Boubakari Bracht K, Neumann C, et al. No correlation between GSH levels in human cancer cell lines and the cell growth inhibitory activities of platinum diamine complexes. Arch Pharm (Weinheim) 2004;337:668-71
  • Ryu JH, Roy R, Ventura J, et al. Redox-sensitive disassembly of amphiphilic copolymer based micelles. Langmuir 2010;26:7086-92
  • Chung JE, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999;62:115-27
  • Chilkoti A, Dreher MR, Meyer DE, et al. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 2002;54:613-30
  • Kingsley JD, Dou H, Morehead J, et al. Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 2006;1:340-50
  • Soga O, van Nostrum CF, Fens M, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release 2005;103:341-53
  • Nakayama M, Okano T, Miyazaki T, et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release 2006;115:46-56
  • Yeh JC, Hsu YT, Su CM, et al. Preparation and characterization of biocompatible and thermoresponsive micelles based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) grafted on polysuccinimide for drug delivery. J Biomater Appl 2014. [Epub ahead of print]
  • de Smet M, Heijman E, Langereis S, et al. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 2011;150:102-10
  • Xu B, Ju Y, Cui Y, et al. tLyP-1-conjugated Au-Nanorod@SiO2 core-shell nanoparticles for tumor targeted drug delivery and photothermal therapy. Langmuir 2014;30(26):7789-97
  • Zhu J, Zheng L, Wen S, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014;35(26):7635-46
  • Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 2014. [Epub ahead of print]
  • Lee ES, Gao Z, Kim D, et al. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Control Release 2008;129:228-36
  • Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 2009;131:4830-8
  • Ding M, Zeng X, He X, et al. Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 2013;7:1918-28
  • Ding M, Li J, Fu X, et al. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups. Biomacromolecules 2009;10:2857-65
  • Seynhaeve AL, Dicheva BM, Hoving S, et al. Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: evaluated by in vitro/in vivo live cell imaging. J Control Release 2013;172:330-40
  • Laginha KM, Verwoert S, Charrois GJ, et al. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 2005;11:6944-9
  • Kim M, Gillies RJ, Rejniak KA. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol 2013;3:278
  • Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 2014;9:467-83
  • Ahn HK, Jung M, Sym SJ, et al. A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2014. [Epub ahead of print]
  • Gong J, Chen M, Zheng Y, et al. Polymeric micelles drug delivery system in oncology. J Control Release 2012;159:312-23
  • Emoto S, Yamaguchi H, Kishikawa J, et al. Antitumor effect and pharmacokinetics of intraperitoneal NK105, a nanomicellar paclitaxel formulation for peritoneal dissemination. Cancer Sci 2012;103:1304-10
  • Kato K, Chin K, Yoshikawa T, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 2012;30:1621-7
  • Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 2011;63:184-92
  • Plummer R, Wilson RH, Calvert H, et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 2011;104:593-8
  • Yamamoto Y, Hyodo I, Takigahira M, et al. Effect of combined treatment with the epirubicin-incorporating micelles (NC-6300) and 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016) on a human gastric cancer model. Int J Cancer 2014;135:214-23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.