1,247
Views
216
CrossRef citations to date
0
Altmetric
Review

Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery

, &

Bibliography

  • Vallet-Regí M, Rámila A, del Real RP, et al. A new property of MCM-41: drug. delivery system. Chem Mater 2001;13:308-11
  • Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed 2007;46:7548-58
  • Yang P, Quan Z, Lu L, et al. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials 2008;29:692-702
  • Yang P, Quan Z, Hou Z, et al. A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 2009;30:4786-95
  • Manzano M, Colilla M, Vallet-Regí M. Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv 2009;6:1383-400
  • Gai S, Yang P, Li C, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 2010;20:1166-72
  • Colilla M, Gonzalez B, Vallet-Regí M. Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater Sci 2013;1:114-34
  • Vallet-Regí M, Ruiz-Hernández E. Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 2011;23:5177-218
  • Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012;41:3679-98
  • Argyo C, Weiss V, Bräuchle C, et al. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 2013;26:435-51
  • Vallet-Regí M, Manzano M, Colilla M. Biomedical applications of mesoporous ceramics: drug delivery, smart materials and bone tissue engineering. CRC Press Taylor&Francis, New York; 2013
  • Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 2006;45:3216-51
  • Trewyn BG, Slowing II, Giri S, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 2007;40:846-53
  • Vallet-Regí M, Colilla M, González B. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 2011;40:596-607
  • Vallet-Regí M. Bio-Ceramics with clinical applications. John Wiley & Sons Ltd, Chichester, United Kindom; 2014
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161-71
  • Langer R. Drug delivery and targeting. Nature 1998;392:5-10
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3:16-20
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135-46
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010;7:653-64
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82
  • Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 2013;9:1-14
  • Huang X, Teng X, Chen D, et al. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010;31:438-48
  • Huang X, Li L, Liu T, et al. The Shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011;5:5390-9
  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 2009;26:244-9
  • Decuzzi P. Ferrari M. the receptor-mediated endocytosis of nonspherical particles. Biophys J 2008;94:3790-7
  • Del Pino P, Pelaz B, Zhang Q, et al. Protein corona formation around nanoparticles – from the past to the future. Mater Horiz 2014;1:301-13
  • Meng H, Xue M, Xia T, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 2011;5:4131-44
  • Cauda V, Argyo C, Bein T. Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 2010;20:8693-9
  • Karakoti AS, Das S, Thevuthasan S, et al. PEGylated Inorganic Nanoparticles. Angew Chem Int Ed 2011;50:1980-94
  • He Q, Zhang J, Shi J, et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 2010;31:1085-92
  • Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 2010;132:60-71
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003;55:403-19
  • Townson JL, Lin YS, Agola JO, et al. Re-examining the size/charge paradigm: differing in vivo characteristics of size- and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 2013;135:16030-3
  • Lammers T, Kiessling F, Hennink WE, et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161:175-87
  • Deng Z, Zhen Z, Hu X, et al. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011;32:4976-86
  • Tsai C-P, Chen C-Y, Hung Y, et al. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 2009;19:5737-43
  • Cheng K, Blumen SR, MacPherson MB, et al. Enhanced uptake of porous silica microparticles by bifunctional surface modification with a targeting antibody and a biocompatible polymer. ACS App Mater Interfaces 2010;2:2489-95
  • Chen F, Hong H, Zhang Y, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 2013;7:9027-39
  • Milgroom A, Intrator M, Madhavan K, et al. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf B Biointerfaces 2014;116:652-7
  • Ferris DP, Lu J, Gothard C, et al. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 2011;7:1816-26
  • Fang W, Wang Z, Zong S, et al. pH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 2014;57:10-15
  • Cheng S-H, Lee C-H, Chen M-C, et al. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J Mater Chem 2010;20:6149-57
  • Xiao D, Jia H-Z, Zhang J, et al. A Dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small 2014;10:591-8
  • He L, Huang Y, Zhu H, et al. Cancer-targeted monodisperse mesoporous silica nanoparticles as carrier of ruthenium polypyridyl complexes to enhance theranostic effects. Adv Funct Mater 2014;24:2754-63
  • Fang IJ, Slowing II, Wu KC, et al. Ligand conformation dictates membrane and endosomal trafficking of arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles. Chemistry 2012;18:7787-92
  • Luo G-F, Chen W-H, Liu Y, et al. Charge-reversal plug gate nanovalves on peptide-functionalized mesoporous silica nanoparticles for targeted drug delivery. J Mater Chem B 2013;1:5723-32
  • Zhang J, Yuan Z-F, Wang Y, et al. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc 2013;135:5068-73
  • Pan L, He Q, Liu J, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 2012;134:5722-5
  • Li Z, Dong K, Huang S, et al. A Smart nanoassembly for multistage targeted drug delivery and magnetic resonance imaging. Adv Funct Mater 2014;18:3612-20
  • Pan L, Liu J, He Q, et al. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013;34:2719-30
  • Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006;3:311-24
  • Li L-L, Yin Q, Cheng J, et al. Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv Healthc Mater 2012;1:567-72
  • Gao L, Cui Y, He Q, et al. Selective Recognition of co-assembled thrombin aptamer and docetaxel on mesoporous silica nanoparticles against tumor cell Proliferation. Chemistry 2011;17:13170-4
  • Luo Z, Cai K, Hu Y, et al. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew Chem Int Ed 2011;50:640-3
  • Brevet D, Gary-Bobo M, Raehm L, et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun (Camb) 2009;12:1475-7
  • Gary-Bobo M, Hocine O, Brevet D, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 2012;423:509-15
  • Yu M, Jambhrunkar S, Thorn P, et al. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013;5:178-83
  • Chen Z, Li Z, Lin Y, et al. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. Chemistry 2013;19:1778-83
  • Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 2004;56:1067-84
  • Rosenholm JM, Meinander A, Peuhu E, et al. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 2008;3:197-206
  • Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008;2:889-96
  • Rosenholm JM, Peuhu E, Bate-Eya LT, et al. Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 2010;6:1234-41
  • Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010;6:1794-805
  • Lu J, Li Z, Zink JI, et al. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012;8:212-20
  • Guo R, Li L-L, Zhao W-H, et al. The intracellular controlled release from bioresponsive mesoporous silica with folate as both targeting and capping agent. Nanoscale 2012;4:3577-83
  • Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release 2008;132:164-70
  • Gethin GT, Cowman S, Conroy RM. The impact of Manuka honey dressings on the surface pH of chronic wounds. Int Wound J 2008;5:185-94
  • Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010;11:50-61
  • Angelos S, Khashab NM, Yang Y-W, et al. pH clock-operated mechanized nanoparticles. J Am Chem Soc 2009;131:12912-14
  • Du L, Liao S, Khatib HA, et al. Controlled-access hollow mechanized silica nanocontainers. J Am Chem Soc 2009;131:15136-42
  • Liu R, Zhang Y, Zhao X, et al. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J Am Chem Soc 2010;132:1500-1
  • Gan Q, Lu X, Yuan Y, et al. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 2011;32:1932-42
  • Xu C, Lin Y, Wang J, et al. Nanoceria-triggered synergetic drug release based on CeO2 -capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv Healthc Mater 2013;2:1591-9
  • Liu R, Liao P, Liu J, Feng P. Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release. Langmuir 2011;27:3095-9
  • Sun J-T, Hong C-Y, Pan C-Y. Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. J Phys Chem C 2010;114:12481-6
  • Popat A, Liu J, Lu GQ. Max), Qiao SZ. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem 2012;22:11173-8
  • Wang J, Liu H, Leng F, et al. Autofluorescent and pH-responsive mesoporous silica for cancer-targeted and controlled drug release. Microporous Mesoporous Mater 2014;186:187-93
  • Feng W, Zhou X, He C, et al. Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J Mater Chem B 2013;1:5886-98
  • Casasús R, Marcos MD, Martínez-Mañez R, et al. Toward the development of ionically controlled nanoscopic molecular gates. J Am Chem Soc 2004;126:8612-13
  • Casasús R, Climent E, Marcos MD, et al. Dual aperture control on pH- and anion-driven supramolecular nanoscopic hybrid gate-like ensembles. J Am Chem Soc 2008;130:1903-17
  • Chen L, Li L, Zhang L, et al. Designed fabrication of unique eccentric mesoporous silica nanocluster-based core-shell nanostructures for pH-responsive drug delivery. ACS Appl Mater Interfaces 2013;5:7282-90
  • Chen M, He X, Wang K, et al. A pH-responsive polymer/mesoporous silica nano-container linked through an acid cleavable linker for intracellular controlled release and tumor therapy in vivo. J Mater Chem B 2014;2:428-36
  • Lee C-H, Cheng S-H, Huang I-P, et al. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Chem Int Ed Engl 2010;49:8214-19
  • Lee JE, Lee DJ, Lee N, et al. Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging. J Mater Chem 2011;21:16869-72
  • Cheng R, Feng F, Meng F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011;152:2-12
  • Kuppusamy P, Li H, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 2002;62(1):307-12
  • Lai CY, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003;125:4451-9
  • Giri S, Trewyn BG, Stellmaker MP, Lin VS. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem-Int Ed Engl 2005;44:5038-44
  • Torney F, Trewyn BG, Lin VS, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2007;2:295-300
  • Kim H, Kim S, Park C, et al. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv Mater 2010;22:4280-3
  • Nadrah P, Maver U, Jemec A, et al. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica. ACS Appl Mater Interfaces 2013;5:3908-15
  • Nadrah P, Porta F, Planinšek O, et al. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better. Phys Chem Chem Phys 2013;15:10740-8
  • Liu R, Zhao X, Wu T, Feng P. Tunable redox-responsive hybrid nanogated ensembles. J Am Chem Soc 2008;130:14418-19
  • Méndez J, Monteagudo A, Griebenow K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug Chem 2012;23:698-704
  • Méndez J, Morales Cruz M, et al. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm 2013;11:102-11
  • Yuan L, Chen W, Hu J, et al. Mechanistic study of the covalent loading of paclitaxel via disulfide linkers for controlled drug release. Langmuir 2013;29:734-43
  • Ahn B, Park J, Singha K, et al. Mesoporous silica nanoparticle-based cisplatin prodrug delivery and anticancer effect under reductive cellular environment. J Mater Chem B 2013;1:2829-36
  • Sahay G, Alakhova DY, Kabanov A V. Endocytosis of nanomedicines. J Control Release 2010;145:182-95
  • Austin CD, Wen XH, Gazzard L, et al. Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc Natl Acad Sci USA 2005;102:17987-92
  • Sauer AM, Schlossbauer A, Ruthardt N, et al. Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. Nano Lett 2010;10:3684-91
  • Dobay MP, Schmidt A, Mendoza E, et al. Cell type determines the light-induced endosomal escape kinetics of multifunctional mesoporous silica nanoparticles. Nano Lett 2013;13:1047-52
  • Li X, Chen Y, Wang M, et al. A mesoporous silica nanoparticle – PEI – Fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 2013;34:1391-401
  • De la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 2012;64:967-78
  • Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006;11:1696-701
  • Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 2012;181:1895-9
  • Singh N, Karambelkar A, Gu L, et al. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J Am Chem Soc 2011;133:19582-5
  • Park C, Kim H, Kim S, Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J Am Chem Soc 2009;131:16614-15
  • Patel K, Angelos S, Dichtel WR, et al. Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 2008;130:2382-3
  • Schlossbauer A, Kecht J, Bein T. Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Angew Chem Int Ed Engl 2009;48:3092-5
  • Bernardos A, Mondragon L, Aznar E, et al. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 2010;4:6353-8
  • Coll C, Mondragon L, Martínez-Mañez R, et al. Enzyme-mediated controlled release systems by Anchoring peptide sequences on mesoporous silica supports. Angew Chem Int Ed Engl 2011;50:2138-40
  • Bernardos A, Mondragón L, Javakhishvili I, et al. Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems. Chemistry (Easton) 2012;18:13068-78
  • Agostini A, Mondragón L, Bernardos A, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chemie Int Ed Engl 2012;51:10556-60
  • Popat A, Ross BP, Liu J, et al. Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. Angew Chemie Int Ed Engl 2012;51:12486-9
  • Aznar E, Villalonga R, Giménez C, et al. Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chem Commun 2013;49:6391-3
  • Zhao WR, Zhang HT, He QJ, et al. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chem Commun 2011;47:9459-61
  • Geng J, Li M, Wu L, et al. Mesoporous Silica Nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Adv Healthc Mater 2012;1:332-6
  • Climent E, Bernardos A, Martínez-Máñez R, et al. Controlled delivery systems using antibody-capped mesoporous nanocontainers. J Am Chem Soc 2009;131:14075-80
  • He X, Zhao Y, He D, et al. ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir 2012;28:12909-15
  • Liu J, Stace-Naughton A, Jiang X, et al. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 2009;131:1354-5
  • Liu J, Jiang X, Ashley C, et al. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J Am Chem Soc 2009;131:7567-9
  • Wang L-S, Wu L-C, Lu S-Y, et al. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano 2010;4:4371-9
  • Cauda V, Engelke H, Sauer A, et al. Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Lett 2010;10:2484-92
  • Zhang J, Desai D, Rosenholm JM. Tethered lipid bilayer gates: toward extended retention of hydrophilic cargo in porous nanocarriers. Adv Funct Mater 2014;24:2352-60
  • Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003;421:350-3
  • Zhu Y, Fujiwara M. Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. Angew Chem Int Ed Engl 2007;46:2241-4
  • Ferris DP, Zhao Y-L, Khashab NM, et al. Light-Operated Mechanized Nanoparticles. J Am Chem Soc 2009;131:1686-8
  • Mei X, Yang S, Chen D, et al. Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with beta-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. Chem Commun (Camb) 2012;48:10010-12
  • Vivero-Escoto JL, Slowing II, Wu C-W, Lin VS. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc 2009;131:3462-3
  • Knezevic NZ, Lin VS. A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 2013;5:1544-51
  • Knezevic NZ, Trewyn BG, Lin VS. Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun 2011;47:2817-19
  • Park C, Lee K, Kim C. Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition. Angew Chem Int Ed 2009;48:1275-8
  • He D, He X, Wang K, et al. A Light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir 2012;28:4003-8
  • Lai J, Mu X, Xu Y, et al. Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles. Chem Commun 2010;46:7370-2
  • Chang Y-T, Liao P-Y, Sheu H-S, et al. Near-infrared light-responsive intracellular drug and siRNA release using Au nanoensembles with oligonucleotide-capped silica shell. Adv Mater 2012;24:3309-14
  • Fang W, Yang J, Gong J, Zheng N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv Funct Mater 2012;22:842-8
  • Yang J, Shen D, Zhou L, et al. Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem Mater 2013;25:3030-7
  • Fu Q, Rao GVR, Ward TL, et al. Thermoresponsive transport through ordered mesoporous silica/PNIPAAm copolymer membranes and microspheres. Langmuir 2007;23:170-4
  • Park J-H, Lee Y-H, Oh S-G. Preparation of thermosensitive PNIPAm-Grafted mesoporous silica particles. Macromol Chem Phys 2007;208:2419-27
  • Cao L, Man T, Zhuang JQ, Kruk M. Poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate) grafted on an ordered mesoporous silica surface using atom transfer radical polymerization with activators regenerated by electron transfer. J Mater Chem 2012;22:6939-46
  • Nagase K, Kobayashi J, Kikuchi A, et al. Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules. Langmuir 2007;23:9409-15
  • Hoare T, Santamaría J, Goya GF, et al. A Magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 2009;9:3651-7
  • Karesoja M, McKee J, Karjalainen E, et al. Mesoporous silica particles grafted with poly(ethyleneoxide-block-N-vinylcaprolactam). J Polym Sci 2013;51:5012-20
  • Sun J-T, Yu Z-Q, Hong C-Y, Pan C-Y. Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release. Macromol Rapid Commun 2012;33:811-18
  • Wu X, Wang Z. Zhu D, et al. pH and Thermo Dual-Stimuli-Responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer–lipid bilayer. ACS Appl Mater Interfaces 2013;5:10895-903
  • Schlossbauer A, Warncke S, Gramlich PM, et al. A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew Chem Int Ed Engl 2010;49:4734-7
  • Aznar E, Mondragón L, Ros-Lis J V, et al. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl 2011;50:11172-5
  • Martelli G, Zope HR, Brovia Capell M, Kros A. Coiled-coil peptide motifs as thermoresponsive valves for mesoporous silica nanoparticles. Chem Commun 2013;49:9932-4
  • Laurent S, Dutz S, Haefeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011;166:8-23
  • Ruiz-Hernández E, López-Noriega A, Arcos D, et al. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chem Mater 2007;19:3455-63
  • Arcos D, Fal-Miyar V, Ruiz-Hernández E, et al. Supramolecular mechanisms in the synthesis of mesoporous magnetic nanospheres for hyperthermia. J Mater Chem 2012;22:64-72
  • Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 2011;5:1259-66
  • Baeza A, Guisasola E, Ruiz-Hernández E, et al. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 2012;24:517-24
  • Bringas E, Koysuren O, Quach D V, et al. Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chem Commun 2012;48:5647-9
  • Thomas CR, Ferris DP, et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 2010;132:10623-5
  • Liu Q, Zhang JX, Xia WL, Gu HC. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale 2012;4:3415-21
  • Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 2012;41:2575-89
  • Lin Y-S, Hurley KR, Haynes CL. Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 2012;3:364-74
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8:137-43
  • Choi CH, Alabi CA, Webster P, Davis ME. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Proc Natl Acad Sci USA 2010;107:1235-40
  • Huang X, Peng X, Wang Y, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010;4:5887-96
  • Kunjachan S, Pola R, Gremse F, et al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 2014;14:972-81
  • Namdee K, Thompson AJ, Charoenphol P, Eniola-Adefeso O. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir 2013;29:2530-5
  • Chen Y, Chen H, Shi J. In vivo bio-Safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 2013;25:3144-76
  • Mackowiak SA, Schmidt A, Weiss V, et al. Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett 2013;13:2576-83
  • Ashley CE, Carnes EC, Epler KE, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 2012;6:2174-88
  • Epler K, Padilla D, Phillips G, et al. Delivery of ricin toxin A-chain by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. Adv Healthc Mater 2012;1:348-53
  • Wang Y, Wang K, Zhao J, et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 2013;135:4799-804
  • Zhao Z, Meng H, Wang N, et al. A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed 2013;52:7487-91
  • Slowing I, Trewyn BG, Lin VS. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 2006;128:14792-3
  • Porta F, Lamers GE, Morrhayim J, et al. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthc Mater 2013;2:281-6
  • Zhang Q, Wang X, Li P-Z, et al. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater 2014;24:2450-61
  • Vivero-Escoto JL, Taylor-Pashow KML, Huxford RC, et al. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 2011;7:3519-28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.