597
Views
132
CrossRef citations to date
0
Altmetric
Review

Carbon nanotubes part II: a remarkable carrier for drug and gene delivery

, , , , , , , , , , , , & show all

Bibliography

  • Bhirde AA, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009;3(2):307-16
  • Mu Q, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett 2009;9(12):4370-5
  • Vashist SK, Venkatesh A, Mitsakakis K, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. BioNanoSci 2012;2(3):115-26
  • Vashist SK, Zheng D, Pastorin G, et al. Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011;49(13):4077-97
  • Rosen Y, Elman NM. Carbon nanotubes in drug delivery: focus on infectious diseases. Expert Opin Drug Deliv 2009;6(5):517-30
  • Jabr-Milane LS, van Vlerken LE, Yadav S, et al. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 2008;34(7):592-602
  • Liu Z, Sun X, Nakayama-Ratchford N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1(1):50-6
  • Klumpp C, Kostarelos K, Prato M, et al. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 2006;1758(3):404-12
  • Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 2012;427(1):3-20
  • Chen J, Chen S, Zhao X, et al. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 2008;130(49):16778-85
  • Berindan-Neagoe I, Balacescu O, Burz C, et al. p53 gene therapy using RNA interference. J BUON 2009;14:S51-9
  • Wen S, Liu H, Cai H, et al. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv healthc Mater 2013;2(9):1267-76
  • Matyshevska OP, Karlash AY, Shtogun YV, et al. Self-organizing DNA/carbon nanotube molecular films. Mater Sci Eng C 2001;15(1):249-52
  • Dong H, Ding L, Yan F, et al. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 2011;32(15):3875-82
  • Pruthi J, Mehra NK, Jain NK. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J Drug Target 2012;20(7):593-604
  • Plata D, Gschwend P, Reddy C. Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology 2008;19(18):185706
  • Lacerda L, Russier J, Pastorin G, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 2012;33(11):3334-43
  • Cai D, Mataraza JM, Qin Z-H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2005;2(6):449-54
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9(6):674-9
  • Ezzati Nazhad Dolatabadi J, Omidi Y, Losic D. Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci 2011;7(3):297-314
  • Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem 2004;116(39):5354-8
  • Jin H, Heller DA, Sharma R, et al. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 2009;3(1):149-58
  • Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 2005;127(16):6021-6
  • Zhang LW, Zeng L, Barron AR, et al. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 2007;26(2):103-13
  • Porter AE, Gass M, Muller K, et al. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2007;2(11):713-17
  • Shi Kam NW, Jessop TC, Wender PA, et al. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126(22):6850-1
  • Kateb B, Van Handel M, Zhang L, et al. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 2007;37:S9-S17
  • Mao H, Kawazoe N, Chen G. Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes. Biomaterials 2013;34(10):2472-9
  • Lee P-C, Chiou Y-C, Wong J-M, et al. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials 2013;34(34):8756-65
  • Heller DA, Baik S, Eurell TE, et al. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 2005;17(23):2793-9
  • Cherukuri P, Bachilo SM, Litovsky SH, et al. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004;126(48):15638-9
  • Cataldo F, Da Ros T. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Vol. 1. Dordrecht, Netherlands, Springer; 2008
  • Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 2008;5(3):331-42
  • Elhissi A, Ahmed W, Hassan IU, et al. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2011;2012:837327
  • Ji S-R, Liu C, Zhang B, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophy Acta 2010;1806(1):29-35
  • Guven A, Rusakova IA, Lewis MT, et al. Cisplatin@ US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 2012;33(5):1455-61
  • Dhar S, Liu Z, Thomale J, et al. Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J Am Chem Soc 2008;130(34):11467-76
  • Heister E, Neves V, Tîlmaciu C, et al. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009;47(9):2152-60
  • Zhang X, Meng L, Lu Q, et al. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 2009;30(30):6041-7
  • Liu Z, Fan AC, Rakhra K, et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 2009;48(41):7668-72
  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, et al. Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 2008(4):459-61
  • Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68(16):6652-60
  • Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 2006(11):1182-4
  • Sirotnak F, Moccio D, Kelleher L, et al. Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Res 1981;41(11 Part 1):4447-52
  • Pignatello R, Toth I, Puglisi G. Structural effects of lipophilic methotrexate conjugates on model phospholipid biomembranes. Thermochim Acta 2001;380(2):255-64
  • Yang D, Yang F, Hu J, et al. Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun 2009(29):4447-9
  • Chen Z, Pierre D, He H, et al. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 2011;405(1):153-61
  • Yinghuai Z, Peng AT, Carpenter K, et al. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 2005;127(27):9875-80
  • Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 2005;44(39):6358-62
  • Kam NWS, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem 2006;118(4):591-5
  • Atkinson H, Chalmers R. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 2010;138(5):485-98
  • Lo SL, Wang S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 2008;29(15):2408-14
  • Al-Jamal KT, Gherardini L, Bardi G, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA 2011;108(27):10952-7
  • Zhang D, Das DB, Rielly CD. Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Drug Deliv 2014;21(8):571-87
  • Cheung K, Han T, Das DB. Effect of force of microneedle insertion on the permeability of insulin in skin. J Diabetes Sci Tech 2014;8(3):444-52
  • Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel. J Pharm Sci 2014;103(2):613-27
  • Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery by gene guns: Mathematical model formulation and experimental verification. Chem Eng Sci 2014
  • Olatunji O, Das DB, Garland MJ, et al. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharm Sci 2013;102(4):1209-21
  • Gao L, Nie L, Wang T, et al. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 2006;7(2):239-42
  • Qin W, Yang K, Tang H, et al. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf B Biointerfaces 2011;84(1):206-13
  • Karmakar A, Bratton SM, Dervishi E, et al. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine 2011;6:1045-55
  • Hao Y, Xu P, He C, et al. Impact of carbodiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery. Nanotechnology 2011;22(28):285103
  • Inoue Y, Fujimoto H, Ogino T, et al. Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode. J R Soc Interface 2008;5(25):909-18
  • Bartholomeusz G, Cherukuri P, Kingston J, et al. In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1alpha) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res 2009;2(4):279-91
  • Ladeira M, Andrade V, Gomes E, et al. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology 2010;21(38):385101
  • Al-Jamal KT, Nerl H, Müller KH, et al. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 2011;3(6):2627-35
  • Varkouhi AK, Foillard S, Lammers T, et al. SiRNA delivery with functionalized carbon nanotubes. Int J Pharm 2011;416(2):419-25
  • Neves V, Heister E, Costa S, et al. Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology 2012;23(36):365102
  • Paul A, Shao W, Shum-Tim D, et al. The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNAAng1+ Vegf nanoparticles. Biomaterials 2012;33(30):7655-64
  • Chen H, Ma X, Li Z, et al. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother 2012;66(5):334-8
  • Sah DW. Therapeutic potential of RNA interference for neurological disorders. Life Sci 2006;79(19):1773-80
  • Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol 2012;19(1):60-71
  • Hartmann G. Gene silencing below the immune radar. J Clin Invest 2009;119(3):438-41
  • Lin X, Ruan X, Anderson MG, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 2005;33(14):4527-35
  • Oh Y-K, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009;61(10):850-62
  • Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 2006;12(7):1197-205
  • Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 2009;5(1):8-20
  • Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 2007;46(12):2023-7
  • Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem 2008;3(6):940-5
  • Huang Y-P, Lin I-J, Chen C-C, et al. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Res Lett 2013;8(1):1-11
  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007;8(2):93-103
  • Kusenda B, Mraz M, Mayer J, et al. MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006;150(2):205-15
  • Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther 2011;18(12):1104-10
  • Madani SY, Mandel A, Seifalian AM. A concise review of carbon nanotube’s toxicology. Nano Rev 2013;4
  • Sharifi S, Behzadi S, Laurent S, et al. Toxicity of nanomaterials. Chem Soc Rev 2012;41(6):2323-43
  • Bai Y, Zhang Y, Zhang J, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 2010;5(9):683-9
  • Liu X, Zhang Y, Li J, et al. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. Int J Nanomedicine 2014;9:823
  • Cui HF, Vashist SK, Al-Rubeaan K, et al. Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 2010;23(7):1131-47
  • Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 2008;4(3):183-200
  • Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289(5):L698-708
  • Takagi A, Hirose A, Futakuchi M, et al. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci 2012;103(8):1440-4
  • Donaldson K, Poland CA, Murphy FA, et al. Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 2013;65(15):2078-86
  • Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008;33(1):105-16
  • Xu J, Futakuchi M, Shimizu H, et al. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci 2012;103(12):2045-50
  • Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3(7):423-8
  • Davis J, Addison J, Bolton R, et al. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol 1986;67(3):415
  • Kasai T, Umeda Y, Ohnishi M, et al. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology 2014. [Epub ahead of print]
  • Yamaguchi A, Fujitani T, Ohyama K-I, et al. Effects of sustained stimulation with multi-wall carbon nanotubes on immune and inflammatory responses in mice. J Toxicol Sci 2012;37(1):177-89
  • Belyanskaya L, Weigel S, Hirsch C, et al. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 2009;30(4):702-11
  • Zhang Y, Ali SF, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010;4(6):3181-6
  • Fujitani T, Ohyama K-I, Hirose A, et al. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J Toxicol Sci 2012;37(1):81-9
  • Murray A, Kisin E, Leonard S, et al. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 2009;257(3):161-71
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005;155(3):377-84
  • Ferrari M. Nanogeometry: beyond drug delivery. Nat Nanotechnol 2008;3(3):131-2
  • Radomski A, Jurasz P, Alonso-Escolano D, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146(6):882-93
  • Liu Z, Tabakman S, Welsher K, et al. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2(2):85-120
  • Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102(33):11600-5
  • Toh RJ, Ambrosi A, Pumera M. Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Chemistry 2012;18(37):11593-6
  • Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 2013;21(1):67-76
  • Niu L, Meng L, Lu Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol Biosci 2013;13(6):735-44
  • Das M, Singh RP, Datir SR, et al. Surface chemistry dependent “switch” regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes. Bioconjug Chem 2013;24(4):626-39
  • Singh R, Mehra NK, Jain V, et al. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target 2013;21(6):581-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.