360
Views
36
CrossRef citations to date
0
Altmetric
Review

Endothelial nanomedicine for the treatment of pulmonary disease

, , &

Bibliography

  • Zenios SA, Makower J, Yock PG. Biodesign: the process of. innovating medical technologies. Cambridge University Press; Cambridge, New York, 2009
  • Discher BM, Won YY, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science 1999;284(5417):1143-6
  • Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012;41(7):2545-61
  • Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008;2(5):889-96
  • Perry JL, Herlihy KP, Napier ME, Desimone JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 2011;44(10):990-8
  • Venkataraman S, Hedrick JL, Ong ZY, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011;63(14-15):1228-46
  • Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 2012;164(2):138-44
  • Leucuta SE. Systemic and biophase bioavailability and pharmacokinetics of nanoparticulate drug delivery systems. Curr Drug Deliv 2013;10(2):208-40
  • Muller DW, Gordon D, San H, et al. Catheter-mediated pulmonary vascular gene transfer and expression. Circ Res 1994;75(6):1039-49
  • Aird WC. Endothelium in health and disease. Pharmacol Rep 2008;60(1):139-43
  • Kennel SJ, Lee R, Bultman S, Kabalka G. Rat monoclonal antibody distribution in mice: an epitope inside the lung vascular space mediates very efficient localization. Int J Rad Appl Instrum B 1990;17(2):193-200
  • McIntosh DP, Tan XY, Oh P, Schnitzer JE. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci USA 2002;99(4):1996-2001
  • Muzykantov VR. Immunotargeting of drugs to the pulmonary vascular endothelium as a therapeutic strategy. Pathophysiology 1998;5(1):15-33
  • Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004;429(6992):629-35
  • Schnitzer JE. Vascular targeting as a strategy for cancer therapy. N Engl J Med 1998;339(7):472-4
  • Spragg DD, Alford DR, Greferath R, et al. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci USA 1997;94(16):8795-800
  • Esmon CT. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. Faseb J 1995;9(10):946-55
  • Van den Hoven JM, Nemes R, Metselaar JM, et al. Complement activation by PEGylated liposomes containing prednisolone. Eur J Pharm Sci 2013;49(2):265-71
  • Szebeni J, Bedőcs P, Csukás D, et al. A porcine model of complement-mediated infusion reactions to drug carrier nanosystems and other medicines. Adv Drug Deliv Rev 2012;64(15):1706-16
  • Muzykantov VR, Martynov AV, Puchnina EA, Danilov SM. In vivo administration of glucose oxidase conjugated with monoclonal antibodies to angiotensin-converting enzyme. The tissue distribution, blood clearance, and targeting into rat lungs. Am Rev Respir Dis 1989;139(6):1464-73
  • Trubetskoy VS, Torchilin VP, Kennel SJ, Huang L. Use of N-terminal modified poly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjug Chem 1992;3(4):323-7
  • Staquicini FI, Cardó-Vila M, Kolonin MG, et al. Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients. Proc Natl Acad Sci USA 2011;108(46):18637-42
  • Muzykantov VR. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin Drug Deliv 2005;2(5):909-26
  • Wang Z, Tiruppathi C, Cho J, et al. Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life 2011;63(8):659-67
  • Pasqualini R, Moeller BJ, Arap W. Leveraging molecular heterogeneity of the vascular endothelium for targeted drug delivery and imaging. Semin Thromb Hemost 2010;36(3):343-51
  • Muzykantov VR. Targeting of superoxide dismutase and catalase to vascular endothelium. J Control Release 2001;71(1):1-21
  • Pasqualini R, McDonald DM, Arap W. Vascular targeting and antigen presentation. Nat Immunol 2001;2(7):567-8
  • Muzykantov VR, Puchnina EA, Atochina EN, et al. Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme. J Nucl Med 1991;32(3):453-60
  • Danilov SM, Gavrilyuk VD, Franke FE, et al. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am J Physiol Lung Cell Mol Physiol 2001;280(6):L1335-47
  • Shuvaev VV, Christofidou-Solomidou M, Scherpereel A, et al. Factors modulating the delivery and effect of enzymatic cargo conjugated with antibodies targeted to the pulmonary endothelium. J Control Release 2007;118(2):235-44
  • Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007;7(10):803-15
  • Huang X, Molema G, King S, et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 1997;275(5299):547-50
  • Keelan ET, Harrison AA, Chapman PT, et al. Imaging vascular endothelial activation: an approach using radiolabeled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin. J Nucl Med 1994;35(2):276-81
  • Muro S, Koval M, Muzykantov V. Endothelial endocytic pathways: gates for vascular drug delivery. Curr Vasc Pharmacol 2004;2(3):281-99
  • Scherpereel A, Rome JJ, Wiewrodt R, et al. Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature. J Pharmacol Exp Ther 2002;300(3):777-86
  • Ford VA, Stringer C, Kennel SJ. Thrombomodulin is preferentially expressed in Balb/c lung microvessels. J Biol Chem 1992;267(8):5446-50
  • Metzger R, Franke FE, Bohle RM, et al. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: vessel, organ and species specificity. Microvasc Res 2011;81(2):206-15
  • Danilov S, Atochina E, Hiemisch H, et al. Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation. Int Immunol 1994;6(8):1153-60
  • Muzykantov VR, Atochina EN, Kuo A, et al. Endothelial cells internalize monoclonal antibody to angiotensin-converting enzyme. Am J Physiol 1996;270(5 Pt 1):L704-13
  • Balyasnikova IV, Sun ZL, Metzger R, et al. Monoclonal antibodies to native mouse angiotensin-converting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery. Tissue Antigens 2006;67(1):10-29
  • Danilov SM, Martynov AV, Klibanov AL, et al. Radioimmunoimaging of lung vessels: an approach using indium-111-labeled monoclonal antibody to angiotensin-converting enzyme. J Nucl Med 1989;30(10):1686-92
  • Muzykantov VR, Danilov SM. Targeting of radiolabeled monoclonal antibody against ACE to the pulmonary endothelium. In: Torchilin V, editor. Targeted delivery of imaging agents. CRC Press; Roca Baton, Florida: 1995. p. 465-85
  • Atochina EN, Balyasnikova IV, Danilov SM, et al. Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress. Am J Physiol 1998;275(4 Pt 1):L806-17
  • Muzykantov VR, Atochina EN, Ischiropoulos H, et al. Immunotargeting of antioxidant enzyme to the pulmonary endothelium. Proc Natl Acad Sci USA 1996;93(11):5213-18
  • Nowak K, Weih S, Metzger R, et al. Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo. Am J Physiol Lung Cell Mol Physiol 2007;293(1):L162-9
  • Miller WH, Brosnan MJ, Graham D, et al. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats. Mol Ther 2005;12(2):321-7
  • Reynolds PN, Zinn KR, Gavrilyuk VD, et al. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2000;2(6):562-78
  • Reynolds PN, Nicklin SA, Kaliberova L, et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001;19(9):838-42
  • Morecroft I, White K, Caruso P, et al. Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension. Mol Ther 2012;20(8):1516-28
  • Nowak K, Hanusch C, Nicksch K, et al. Pre-ischaemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting-enzyme antibodies. Eur J Cardiothorac Surg 2010;37(4):859-63
  • Reynolds AM, Xia W, Holmes MD, et al. Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007;292(5):L1182-92
  • Nowak K, Kolbel HC, Metzger RP, et al. Immunotargeting of the pulmonary endothelium via angiotensin-converting-enzyme in isolated ventilated and perfused human lung. Adv Exp Med Biol 2013;756:203-12
  • Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007;100(2):158-73
  • Giannotta M, Trani M, Dejana E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 2013;26(5):441-54
  • Newman PJ, Albelda SM. Cellular and molecular aspects of PECAM-1. Nouv Rev Fr Hematol 1992;34(Suppl):S9-13
  • Almenar-Queralt A, Duperray A, Miles LA, et al. Apical topography and modulation of ICAM-1 expression on activated endothelium. Am J Pathol 1995;147(5):1278-88
  • Murciano JC, Harshaw DW, Ghitescu L, et al. Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries. Am J Respir Crit Care Med 2001;164(7):1295-302
  • Oh P, Borgstrom P, Witkiewicz H, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 2007;25(3):327-37
  • Garnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes. J Control Release 2008;130(3):226-33
  • Mulivor AW, Lipowsky HH. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 2002;283(4):H1282-91
  • Christofidou-Solomidou M, Kennel S, Scherpereel A, et al. Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury: targeting to thrombomodulin, but not to PECAM-1, causes pulmonary thrombosis and neutrophil transmigration. Am J Pathol 2002;160(3):1155-69
  • Chacko AM, Hood ED, Zern BJ, Muzykantov VR. Targeted Nanocarriers for Imaging and Therapy of Vascular Inflammation. Curr Opin Colloid Interface Sci 2011;16(3):215-27
  • Muro S, Muzykantov VR. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Curr Pharm Des 2005;11(18):2383-401
  • Pan H, Myerson JW, Hu L, et al. Programmable nanoparticle functionalization for in vivo targeting. FASEB J 2013;27(1):255-64
  • Shuvaev VV, Ilies MA, Simone E, et al. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano 2011;5(9):6991-9
  • Skidgel RA. Bradykinin-degrading enzymes: structure, function, distribution, and potential roles in cardiovascular pharmacology. J Cardiovasc Pharmacol 1992;20(Suppl 9):S4-9
  • Springer TA. Adhesion receptors of the immune system. Nature 1990;346(6283):425-34
  • Kishimoto TK, Rothlein R. Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites. Adv Pharmacol 1994;25:117-69
  • Kelly KA, Allport JR, Tsourkas A, et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005;96(3):327-36
  • Tsourkas A, Shinde-Patil VR, Kelly K, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magneto-optical probe. Bioconjug Chem 2005;16(3):576-81
  • Von Asmuth EJ, Smeets EF, Ginsel LA, et al. Evidence for endocytosis of E-selectin in human endothelial cells. Eur J Immunol 1992;22(10):2519-26
  • Kuijpers TW, Raleigh M, Kavanagh T, et al. Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape. A tubulin-driven process. J Immunol 1994;152(10):5060-9
  • Straley KS, Green SA. Rapid transport of internalized P-selectin to late endosomes and the TGN: roles in regulating cell surface expression and recycling to secretory granules. J Cell Biol 2000;151(1):107-16
  • Kessner S, Krause A, Rothe U, Bendas G. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta 2001;1514(2):177-90
  • Kok RJ, Everts M, Asgeirsdottir SA, et al. Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone. Pharm Res 2002;19(11):1730-5
  • Harari OA, Wickham TJ, Stocker CJ, et al. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther 1999;6(5):801-7
  • Albelda SM. Endothelial and epithelial cell adhesion molecules. Am J Respir Cell Mol Biol 1991;4(3):195-203
  • Romer LH, McLean NV, Yan HC, et al. IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. J Immunol 1995;154(12):6582-92
  • Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008;10(10):1713-65
  • Murohara T, Delyani JA, Albelda SM, Lefer AM. Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats. J Immunol 1996;156(9):3550-7
  • Murciano JC, Muro S, Koniaris L, et al. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 2003;101(10):3977-84
  • Muro S, Wiewrodt R, Thomas A, et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 2003;116(8):1599-609
  • Muzykantov VR, Christofidou-Solomidou M, Balyasnikova I, et al. Streptavidin facilitates internalization and pulmonary targeting of an anti-endothelial cell antibody (platelet-endothelial cell adhesion molecule 1): a strategy for vascular immunotargeting of drugs. Proc Natl Acad Sci USA 1999;96(5):2379-84
  • Muro S, Cui X, Gajewski C, et al. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am J Physiol Cell Physiol 2003;285(5):C1339-47
  • Muro S, Muzykantov VR, Murciano JC. Characterization of endothelial internalization and targeting of antibody-enzyme conjugates in cell cultures and in laboratory animals. Methods Mol Biol 2004;283:21-36
  • Muro S, Gajewski C, Koval M, Muzykantov VR. ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 2005;105(2):650-8
  • Ding B-S, Hong N, Christofidou-Solomidou M, et al. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation. Am J Respir Crit Care Med 2009;180(3):247-56
  • Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342(18):1334-49
  • Maniatis NA, Kotanidou A, Catravas JD, Orfanos SE. Endothelial pathomechanisms in acute lung injury. Vascul Pharmacol 2008;49(4–6):119-33
  • Herber-Jonat S, Mittal R, Gsinn S, et al. Comparison of lung accumulation of cationic liposomes in normal rats and LPS-treated rats. Inflamm Res 2011;60(3):245-53
  • Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012;122(8):2731-40
  • Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol 2012;91(6–7):590-601
  • Birukov KG, Zebda N, Birukova AA. Barrier enhancing signals in pulmonary edema. Compr Physiol 2013;3(1):429-84
  • Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008;295(3):L379-99
  • Yamashita CM, Lewis JF. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. Expert Opin Emerg Drugs 2012;17(1):1-4
  • Afshari A, Brok J, Møller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg 2011;112(6):1411-21
  • Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002;82(3):569-600
  • Sakuma T, Okaniwa G, Nakada T, et al. Alveolar fluid clearance in the resected human lung. Am J Respir Crit Care Med 1994;150(2):305-10
  • Perkins GD, McAuley DF, Thickett DR, Gao F. The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 2006;173(3):281-7
  • National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Matthay MA, Brower RG, et al. Randomized, placebo-controlled clinical trial of an aerosolized beta2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 2011;184(5):561-8
  • Gao Smith F, Perkins GD, Gates S, et al. Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet 2012;379(9812):229-35
  • Lakshminarayana PH, Kahn JM. First do no harm: surrogate endpoints and the lesson of beta-agonists in acute lung injury. Crit Care Lond Engl 2012;16(3):314
  • Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 2013;310(16):1683-91
  • Suntres ZE, Shek PN. Prophylaxis against lipopolysaccharide-induced lung injuries by liposome-entrapped dexamethasone in rats. Biochem Pharmacol 2000;59(9):1155-61
  • Suntres ZE, Shek PN. Liposomes promote pulmonary glucocorticoid delivery. J Drug Target 1998;6(3):175-82
  • Hegeman MA, Cobelens PM, Kamps J, et al. Liposome-encapsulated dexamethasone attenuates ventilator-induced lung inflammation. Br J Pharmacol 2011;163(5):1048-58
  • Chen X-Y, Wang S-M, Li N, et al. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats. PLoS One 2013;8(3):e58275
  • Fan J, Shek PN, Suntres ZE, et al. Liposomal antioxidants provide prolonged protection against acute respiratory distress syndrome. Surgery 2000;128(2):332-8
  • Rocksén D, Ekstrand-Hammarström B, Johansson L, Bucht A. Vitamin E reduces transendothelial migration of neutrophils and prevents lung injury in endotoxin-induced airway inflammation. Am J Respir Cell Mol Biol 2003;28(2):199-207
  • Mitsopoulos P, Omri A, Alipour M, et al. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. Int J Pharm 2008;363(1-2):106-11
  • Hood ED, Greineder CF, Dodia C, et al. Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. J Control Release 2012;163(2):161-9
  • Howard MD, Greineder CF, Hood ED, Muzykantov VR. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J Control Release 2014;177:34-41
  • Shuvaev VV, Han J, Yu KJ, et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J 2011;25(1):348-57
  • Hood E, Simone E, Wattamwar P, et al. Nanocarriers for vascular delivery of antioxidants. Nanomed 2011;6(7):1257-72
  • Howard MD, Hood ED, Zern B, et al. Nanocarriers for vascular delivery of anti-inflammatory agents. Annu Rev Pharmacol Toxicol 2014;54:205-26
  • Han J, Shuvaev VV, Muzykantov VR. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. J Pharmacol Exp Ther 2011;338(1):82-91
  • Shuvaev VV, Han J, Tliba S, et al. Anti-inflammatory effect of targeted delivery of SOD to endothelium: mechanism, synergism with NO donors and protective effects in vitro and in vivo. PLoS One 2013;8(10):e77002
  • Dziubla TD, Karim A, Muzykantov VR. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J Control Release 2005;102(2):427-39
  • Dziubla TD, Shuvaev VV, Hong NK, et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 2008;29(2):215-27
  • Simone EA, Dziubla TD, Discher DE, Muzykantov VR. Filamentous polymer nanocarriers of tunable stiffness that encapsulate the therapeutic enzyme catalase. Biomacromolecules 2009;10(6):1324-30
  • Simone EA, Dziubla TD, Arguiri E, et al. Loading PEG-catalase into filamentous and spherical polymer nanocarriers. Pharm Res 2009;26(1):250-60
  • Hood ED, Chorny M, Greineder CF, et al. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 2014;35(11):3708-15
  • Greineder CF, Chacko A-M, Zaytsev S, et al. Vascular immunotargeting to endothelial determinant ICAM-1 enables optimal partnering of recombinant scFv-thrombomodulin fusion with endogenous cofactor. PLoS One 2013;8(11):e80110
  • Mirzapoiazova T, Moitra J, Moreno-Vinasco L, et al. Non-muscle myosin light chain kinase isoform is a viable molecular target in acute inflammatory lung injury. Am J Respir Cell Mol Biol 2011;44(1):40-52
  • Sweitzer TD, Thomas AP, Wiewrodt R, et al. PECAM-directed immunotargeting of catalase: specific, rapid and transient protection against hydrogen peroxide. Free Radic Biol Med 2003;34(8):1035-46
  • Suzuki Y, Cantu E, Christie JD. Primary graft dysfunction. Semin Respir Crit Care Med 2013;34(3):305-19
  • Eppinger MJ, Jones ML, Deeb GM, et al. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res 1995;58(6):713-18
  • Cypel M, Yeung JC, Liu M, et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N Engl J Med 2011;364(15):1431-40
  • Shuvaev VV, Christofidou-Solomidou M, Bhora F, et al. Targeted detoxification of selected reactive oxygen species in the vascular endothelium. J Pharmacol Exp Ther 2009;331(2):404-11
  • Kozower BD, Christofidou-Solomidou M, Sweitzer TD, et al. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nat Biotechnol 2003;21(4):392-8
  • Preissler G, Loehe F, Huff IV, et al. Targeted endothelial delivery of nanosized catalase immunoconjugates protects lung grafts donated after cardiac death: transplantation. 2011;92(4):380-7
  • Voelkel NF, Gomez-Arroyo J, Abbate A, et al. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 2012;40(6):1555-65
  • Crosswhite P, Sun Z. Molecular mechanisms of pulmonary arterial remodeling. Mol Med 2014;20:191-201
  • Pugh ME, Hemnes AR, Robbins IM. Combination therapy in pulmonary arterial hypertension. Clin Chest Med 2013;34(4):841-55
  • Ryan JJ, Marsboom G, Archer SL. Rodent models of group 1 pulmonary hypertension. Handb Exp Pharmacol 2013;218:105-49
  • Kimura S, Egashira K, Chen L, et al. Nanoparticle-mediated delivery of nuclear factor kappaB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 2009;53(5):877-83
  • Chen L, Nakano K, Kimura S, et al. Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression of monocrotaline-induced pulmonary artery hypertension. Hypertension 2011;57(2):343-50
  • Urakami T, Järvinen TAH, Toba M, et al. Peptide-directed highly selective targeting of pulmonary arterial hypertension. Am J Pathol 2011;178(6):2489-95
  • Toba M, Alzoubi A, O’Neill K, et al. A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. Am J Pathol 2014;184(2):369-75
  • Järvinen TAH, Ruoslahti E. Molecular changes in the vasculature of injured tissues. Am J Pathol 2007;171(2):702-11
  • Sugahara KN, Teesalu T, Karmali PP, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010;328(5981):1031-5
  • Gupta V, Gupta N, Shaik IH, et al. Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release 2013;167(2):189-99
  • Yin Y, Wu X, Yang Z, et al. The potential efficacy of R8-modified paclitaxel-loaded liposomes on pulmonary arterial hypertension. Pharm Res 2013;30(8):2050-62
  • Reynolds PN. Gene therapy for pulmonary hypertension: prospects and challenges. Expert Opin Biol Ther 2011;11(2):133-43
  • Reynolds AM, Holmes MD, Danilov SM, Reynolds PN. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J 2012;39(2):329-43
  • Ewert R, Halank M, Bruch L, Ghofrani HA. A case series of patients with severe pulmonary hypertension receiving an implantable pump for intravenous prostanoid therapy. Am J Respir Crit Care Med 2012;186(11):1196-8
  • Lin BW, Schreiber DH, Liu G, et al. Therapy and outcomes in massive pulmonary embolism from the Emergency Medicine Pulmonary Embolism in the Real World Registry. Am J Emerg Med 2012;30(9):1774-81
  • Meyer G, Vicaut E, Danays T, et al. Fibrinolysis for Patients with Intermediate-Risk Pulmonary Embolism. N Engl J Med 2014;370(15):1402-11
  • Greineder CF, Howard MD, Carnemolla R, et al. Advanced drug delivery systems for anti-thrombotic agents. Blood 2013;122(9):1565-75
  • Dichek DA, Anderson J, Kelly AB, et al. Enhanced In vivo antithrombotic effects of endothelial cells expressing recombinant plasminogen activators transduced with retroviral vectors. Circulation 1996;93(2):301-9
  • Muzykantov VR, Barnathan ES, Atochina EN, et al. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature. J Pharmacol Exp Ther 1996;279(2):1026-34
  • Ding B-S, Gottstein C, Grunow A, et al. Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature. Blood 2005;106(13):4191-8
  • Ding B-S, Hong N, Murciano J-C, et al. Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature. Blood 2008;111(4):1999-2006
  • Kiely JM, Cybulsky MI, Luscinskas FW, Gimbrone MAJr. Immunoselective targeting of an anti-thrombin agent to the surface of cytokine-activated vascular endothelial cells. Arterioscler Thromb Vasc Biol 1995;15(8):1211-18
  • Ten Wolde M, Söhne M, Quak E, et al. Prognostic value of echocardiographically assessed right ventricular dysfunction in patients with pulmonary embolism. Arch Intern Med 2004;164(15):1685-9
  • Schoepf UJ, Kucher N, Kipfmueller F, et al. Right ventricular enlargement on chest computed tomography: a predictor of early death in acute pulmonary embolism. Circulation 2004;110(20):3276-80
  • Becattini C, Agnelli G. Predictors of mortality from pulmonary embolism and their influence on clinical management. Thromb Haemost 2008;100(5):747-51
  • Miller RL, Das S, Anandarangam T, et al. Association between right ventricular function and perfusion abnormalities in hemodynamically stable patients with acute pulmonary embolism. Chest 1998;113(3):665-70
  • Boldt J, Müller M, Uphus D, et al. Cardiorespiratory changes in patients undergoing pulmonary resection using different anesthetic management techniques. J Cardiothorac Vasc Anesth 1996;10(7):854-9
  • Alpert JS, Godtfredsen J, Ockene IS, et al. Pulmonary hypertension secondary to minor pulmonary embolism. Chest 1978;73(6):795-7
  • Ueno Y, Kawashima A, Koike H, Nishio S. Effect of beraprost sodium, a stable prostacyclin analogue, on pulmonary thromboembolism in mice. Thromb Res 1995;77(2):193-8
  • Böttiger BW, Motsch J, Dörsam J, et al. Inhaled nitric oxide selectively decreases pulmonary artery pressure and pulmonary vascular resistance following acute massive pulmonary microembolism in piglets. Chest 1996;110(4):1041-7
  • Todd MH, Forrest JB, Cragg DB. The effects of aspirin and methysergide on responses to clot-induced pulmonary embolism. Am Heart J 1983;105(5):769-76
  • Dias-Junior CA, Vieira TF, Moreno HJr, et al. Sildenafil selectively inhibits acute pulmonary embolism-induced pulmonary hypertension. Pulm Pharmacol Ther 2005;18(3):181-6
  • Watts JA, Gellar MA, Fulkerson M-BK, Kline JA. A soluble guanylate cyclase stimulator, BAY 41-8543, preserves right ventricular function in experimental pulmonary embolism. Pulm Pharmacol Ther 2013;26(2):205-11
  • Kooter AJ, Ijzerman RG, Kamp O, et al. No effect of epoprostenol on right ventricular diameter in patients with acute pulmonary embolism: a randomized controlled trial. BMC Pulm Med 2010;10:18
  • Nakada MT, Amin K, Christofidou-Solomidou M, et al. Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J Immunol 2000;164(1):452-62
  • Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal 2011;15(6):1607-38
  • Caironi P, Ichinose F, Liu R, et al. 5-Lipoxygenase deficiency prevents respiratory failure during ventilator-induced lung injury. Am J Respir Crit Care Med 2005;172(3):334-43
  • Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 2011;29:139-62
  • Kaynar AM, Houghton AM, Lum EH, et al. Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am J Respir Cell Mol Biol 2008;39(1):53-60
  • Oliveira-Júnior IS, de Oliveira-Júnior IS, Maganhin CC, et al. Effects of pentoxifylline on TNF-alpha and lung histopathology in HCL-induced lung injury. Clinics (Sao Paulo) 2008;63(1):77-84
  • Jurek SC, Hirano-Kobayashi M, Chiang H, et al. Prevention of ventilator-induced lung edema by inhalation of nanoparticles releasing ruthenium red. Am J Respir Cell Mol Biol 2014;50(6):1107-17
  • Xia Z, Wang X, Chen X, Xia Z. Effect of NO donor sodium nitroprusside on lipopolysaccharide induced acute lung injury in rats. Injury 2007;38(1):53-9
  • Goldman G, Welbourn R, Kobzik L, et al. Neutrophil adhesion receptor CD18 mediates remote but not localized acid aspiration injury. Surgery 1995;117(1):83-9
  • Singleton PA, Moreno-Vinasco L, Sammani S, et al. Attenuation of vascular permeability by methylnaltrexone: role of mOP-R and S1P3 transactivation. Am J Respir Cell Mol Biol 2007;37(2):222-31
  • Parikh SM. Dysregulation of the angiopoietin-Tie-2 axis in sepsis and ARDS. Virulence 2013;4(6):517-24
  • Eckle T, Füllbier L, Wehrmann M, et al. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 2007:178(12):8127-37
  • Treml B, Neu N, Kleinsasser A, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med 2010;38(2):596-601
  • Peng X, Hassoun PM, Sammani S, et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med 2004;169(11):1245-51
  • Bellingan G, Maksimow M, Howell DC, et al. The effect of intravenous interferon-beta-1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: an open-label study. Lancet Respir Med 2014;2(2):98-107
  • Shyamsundar M, McAuley DF, Ingram RJ, et al. Keratinocyte growth-factor promotes epithelial survival and resolution in a human model of lung injury. Am J Respir Crit Care Med 2014;189(12):1520-9
  • Lynch MJ, Grum CM, Gallagher KP, et al. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury. J Surg Res 1988;44(5):538-44
  • Ischiropoulos H, al-Mehdi AB, Fisher AB. Reactive species in ischemic rat lung injury: contribution of peroxynitrite. Am J Physiol 1995;269(2 Pt 1):L158-64
  • Schütte H, Witzenrath M, Mayer K, et al. Short-term “preconditioning” with inhaled nitric oxide protects rabbit lungs against ischemia-reperfusion injury. Transplantation 2001;72(8):1363-70
  • Ardehali A, Laks H, Levine M, et al. A prospective trial of inhaled nitric oxide in clinical lung transplantation. Transplantation 2001;72(1):112-15
  • Novick RJ, MacDonald J, Veldhuizen RA, et al. Evaluation of surfactant treatment strategies after prolonged graft storage in lung transplantation. Am J Respir Crit Care Med 1996;154(1):98-104
  • Kermeen FD, McNeil KD, Fraser JF, et al. Resolution of severe ischemia-reperfusion injury post-lung transplantation after administration of endobronchial surfactant. J Heart Lung Transplant 2007;26(8):850-6
  • Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10(12):826-37
  • Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 2009;15(8):946-50
  • Diepenhorst GMP, van Gulik TM, Hack CE. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann Surg 2009;249(6):889-99
  • Keshavjee S, Davis RD, Zamora MR, et al. A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg 2005;129(2):423-8
  • Dixon JT, Gozal E, Roberts AM. Platelet-mediated vascular dysfunction during acute lung injury. Arch Physiol Biochem 2012;118(2):72-82
  • Ito K, Shimada J, Kato D, et al. Protective effects of preischemic treatment with pioglitazone, a peroxisome proliferator-activated receptor-gamma ligand, on lung ischemia-reperfusion injury in rats. Eur J CardioThorac Surg 2004;25(4):530-6
  • Zhou Z, Zhu X, Chen J, et al. The interaction between Toll-like receptor 4 signaling pathway and hypoxia-inducible factor 1alpha in lung ischemia-reperfusion injury. J Surg Res 2014;188(1):290-7
  • Fujita H, Fukumoto Y, Saji K, et al. Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels 2010;25(2):144-9
  • Waxman AB, Lawler L, Cornett G. Cicletanine for the treatment of pulmonary arterial hypertension. Arch Intern Med 2008;168(19):2164-6
  • Rai PR, Cool CD, King JAC, et al. The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2008;178(6):558-64
  • Perros F, Montani D, Dorfmüller P, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2008;178(1):81-8
  • Dahal BK, Cornitescu T, Tretyn A, et al. Role of epidermal growth factor inhibition in experimental pulmonary hypertension. Am J Respir Crit Care Med 2010;181(2):158-67
  • Izikki M, Guignabert C, Fadel E, et al. Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J Clin Invest 2009;119(3):512-23
  • Hoeper MM, Barst RJ, Bourge RC, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 2013;127(10):1128-38
  • Bonnet S, Rochefort G, Sutendra G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 2007;104(27):11418-23
  • Ameshima S, Golpon H, Cool CD, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 2003;92(10):1162-9
  • Pullamsetti SS, Doebele C, Fischer A, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 2012;185(4):409-19
  • Zhao L, Chen C-N, Hajji N, et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 2012;126(4):455-67
  • Mizuno S, Farkas L, Al Husseini A, et al. Severe pulmonary arterial hypertension induced by SU5416 and ovalbumin immunization. Am J Respir Cell Mol Biol 2012;47(5):679-87
  • Steiner MK, Syrkina OL, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 2009;104(2):236-44. 28p following 244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.