626
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery

, PhD, , PhD & , PhD

Bibliography

  • Otto DP, de Villiers MM. Why is the nanoscale special (or not)? Fundamental properties and how it relates to the design of nano-enabled drug delivery systems. Nanotechnol Rev 2013;2:171-99
  • Otto DP, de Villiers MM. Physicochemical principles of nanosized drug delivery systems. In: De Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in drug delivery. Springer; New York: 2009. p. 3-33
  • Guisbiers G, Shirinyan AS, Wautelet M. The physics of macro-, micro- and nanomaterials. Phys Mag 2005;27:131-41
  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006;35:583-92
  • Hatta I. Thermal characteristics in a nanometer scale. J Therm Anal Calorim 2002;69:717-25
  • Chen G. Particularities of heat conduction in nanostructures. J Nanopart Res 2000;2:199-204
  • Ha JM, Wolf JH, Hillmyer MA, et al. Polymorph selectivity under nanoscopic confinement. J Am Chem Soc 2004;126:3382-3
  • Diao Y, Helgeson ME, Myerson AS, et al. Controlled nucleation from solution using polymer microgels. J Am Chem Soc 2011;133:3756-9
  • Bergese P, Colombo I, Gervasoni D, et al. Melting of nanostructured drugs embedded into a polymer matrix. J Phys Chem B 2004;108:15488-93
  • Mihranyan A, Strømme M. Solubility of fractal nanoparticles. Surf Sci 2007;601:315-19
  • Ouyang G, Tan X, Wang CX, et al. Solid solubility limit in alloying nanoparticles. Nanotechnology 2006;17:4257-62
  • Nanda KK, Maisels A, Kruis FE, et al. Higher surface energy of free nanoparticles. Phys Rev Lett 2003;91:106102
  • Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 2004;284:109-22
  • Bisrat M, Nyström C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int J Pharm 1988;47:223-31
  • Galli C. Experimental determination of the diffusion boundary layer width of micro and submicron particles. Int J Pharm 2006;313:114-22
  • Anderberg EK, Bisrat M, Nyström C. Physicochemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of felodipine, a sparingly soluble drug. Int J Pharm 1988;47:67-77
  • Boso DP, Lee SY, Ferrari M, et al. Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks. Int J Nanomedicine 2011;6:1517-26
  • Farhadi Ghalati P, Keshavarzian E, Abouali O, et al. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput Biol Med 2012;42:39-49
  • Abouali O, Keshavarzian E, Farhadi Ghalati P, et al. Micro and nanoparticle deposition in human nasal passage pre and port virtual maxillary sinus endoscopic surgery. Respir Physiol Neurobiol 2012;181:335-45
  • Moghadas H, Abouali O, Faramarzi A, et al. Numerical investigation of septal deviation effect on deposition of nano/microparticles in human nasal passage. Respir Physiol Neurobiol 2011;177:9-18
  • Jiang JB, Zhao K. Airflow and nanoparticle deposition in rat nose under various breathing and sniffing conditions – a computational evaluation of the unsteady and turbulent effect. J Aerosol Sci 2010;41:1030-43
  • Schroeter JD, Kimbell JS, Asgharian B, et al. Computational fluid dynamics simulations of submicrometer and micrometer particle deposition in the nasal passages of a Sprague-Dawley rat. J Aerosol Sci 2012;43:31-44
  • Lee KS, Hwang TH, Kim SH, et al. Numerical simulations on aerodynamic focusing of particles in a wide size range of 30 nm-10 µm. Aerosol Sci Technol 2013;47:1001-8
  • Siepmann J. In-silico simulations of advanced drug delivery systems: what will the future offer? Int J Pharm 2013;454:512-16
  • Verberg R, Alexeev A, Balazs AC. Modeling the release of nanoparticles from mobile microcapsules. J Chem Phys 2006;125:224712
  • Müller K, Fedosov DA, Gompper G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep 2014;4:4871
  • De Nicola A, Hezaveh S, Zhao Y, et al. Micellar drug nanocarriers and biomembranes: how do they interact? Phys Chem Chem Phys 2014;16:5093-105
  • Kirch J, Guenther M, Doshi N, et al. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge-an ex vivo and in silico approach. J Control Release 2012;159:128-34
  • Shillcock JC. Spontaneous vesicle self-assembly: a mesoscopic view of membrane dynamics. Langmuir 2012;28:541-7
  • Dai X, Shi X, Wang Y, et al. Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: mesoscopic simulation. J Colloid Interface Sci 2012;384:73-80
  • Luo Z, Jiang J. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 2012;162:185-93
  • Guo XD, Zhang LJ, Wu ZM, et al. Dissipative particle dynamics studies on microstructure of pH-sensitive micelles for sustained drug delivery. Macromolecules 2010;43:7839-44
  • Ding HM, Tian WD, Ma YQ. Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 2012;6:1230-8
  • Chakravarthi SS, De S, Miller DW, Robinson DH. Comparison of anti-tumor efficacy of paclitaxel delivered in nano- and microparticles. Int J Pharm 2010;383:37-44
  • De S, Miller DW, Robinson DH. Effect of particle size of nanospheres and microspheres on the cellular-association and cytotoxicity of paclitaxel in 4T1 cells. Pharm Res 2005;22:766-75
  • Macho Fernandez E, Chang J, Fontaine J, et al. Activation of invariant Natural Killer T lymphocytes in response to the alpha-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles. Int J Pharm 2012;423:45-54
  • Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 2005;57:1555-63
  • Lamprecht A, Schäfer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res 2001;18:788-93
  • Schmidt C, Lautenschlaeger C, Collnot EM, et al. A. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa – a first in vivo study in human patients. J Control Release 2013;165:139-45
  • Kreyling WG, Semmler-Behnke M, Takenaka S, et al. Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc Chem Res 2013;46:714-22
  • Cruz LJ, Tacken PJ, Fokkink R, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 2010;144:118-26
  • Iannuccelli V, Coppi G, Romagnoli M, et al. In vivo detection of lipid-based nano- and microparticles in the outermost human stratum corneum by EDX analysis. Int J Pharm 2013;447:204-12
  • Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011;63:470-91
  • Raphael AP, Primiero CA, Ansaldo AB, et al. Elongated microparticles for enhanced drug delivery to ex vivo and in vivo pig skin. J Control Release 2013;172:96-104
  • Nosrati N, Hassanpour-Ezzati M, Mousavi SZ, et al. Comparison of MnO2 nanoparticles and microparticles distribution in CNS and muscle and effect on acute pain threshold in rats. Nanomedicine J 2014;1:180-90
  • Ai H, Jones SA, De Villiers MM, et al. Nano-encapsulation of furosemide microcrystals for controlled drug release. J Cont Release 2003;86:59-68
  • Pargaonkar N, Lvov YM, Li N, et al. Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly. Pharm Res 2005;22(5):826-35
  • Strydom SJ, Otto DP, Stieger N, et al. Self-assembled macromolecular nanocoatings to stabilize and control drug release from nanoparticles. Powder Technol 2014;256:470-6
  • Zahr AS, De Villiers MM, Pishko MV. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir 2005;21(1):403-10
  • Song M, Li N, Sun S, et al. Effect of viscosity and concentration of wall former, emulsifier and pore-inducer on the properties of amoxicillin microcapsules prepared by emulsion solvent evaporation. Farmaco 2005;60(3):61-267
  • Hasan AS, Socha M, Lamprecht A, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm 2007;344:53-61
  • Hu J, Dong Y, Pastorin G, et al. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers. J Nanopart Res 2013;15:1560
  • McBride AA, Price DN, Lamoureux LR, et al. Preparation and characterization of novel magnetic nano-in-microparticles for site-specific pulmonary drug delivery. Mol Pharm 2013;10:3574-81
  • Pouponneau P, Leroux JC, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 2009;30:6327-32
  • Pinkerton NM, Zhang SW, Youngblood RL, et al. Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery. Biomacromolecules 2014;15:252-61
  • Wanakule P, Liu GW, Fleury AT, et al. Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J Control Release 2012;162:429-37
  • Jiang J, Cao D. Modeling of highly efficient drug delivery system induced by self-assembly of nanocarriers: a density functional study. Sci China Chem 2013;56:249-55
  • Yao F, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 2010;7:429-44
  • Baker GL, Gupta A, Clark ML, et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 2008;101:122-31
  • Andrievsky G, Klochkov V, Derevyanchenko L. Is the C60 fullerene molecule toxic?!. Fuller Nanotub Carbon Nanostruct 2005;13:363-76
  • Bullar-Dillard R, Creek KE, Scrivens WA, et al. Tissue sites of uptake of 14C-labeled C60. Bioorg Chem 1996;24:376-85
  • Patil G, Khan MI, Patel DK, et al. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro- and nano-particles of dolomite on human lung epithelial cells A549. Environ Toxicol Pharmacol 2012;34:436-45
  • Ahmad I, Khan MI, Patil G, et al. Evaluation of cytotoxic, genotoxic and inflammatory responses of micro- and nano-particles of granite on human lung fibroblast cell IMR-90. Toxicol Lett 2012;208:300-7
  • Singh SP, Rahman MF, Murty US, et al. Comparative study of genotoxicity and tissue distribution of nano and micro sized iron oxide in rats after acute oral treatment. Toxicol Appl Pharmacol 2013;266:56-66
  • Singh SP, Kumari M, Kumari SI, et al. Genotoxicity of nano- and micro-sized manganese oxide in rats after acute oral treatment. Mutat Res 2013;754:39-50
  • Cha K, Hong HW, Choi YG, et al. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 2008;30:1893-9
  • Raju HB, Hu Y, Vedula A, et al. Evaluation of magnetic micro- and nano-particle toxicity to ocular tissues. PLoS One 2011;6:e17452
  • Nohynek GJ, Lademann J, Ribaud C, et al. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007;37:251-77
  • Devarakonda B, Otto DP, Judefeind A, et al. Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. Int J Pharm 2007;345:142-53
  • Devarakonda B, Hill RA, de Villiers MM. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm 2004;284:133-40
  • Devarakonda B, Judefeind A, Chigurupati S, et al. The effect of polyamidoamine dendrimers on the in vitro cytotoxicity of paclitaxel in cultured prostate cancer (PC-3M) cells. J Biomed Nanotechnol 2007;3:384-93
  • Strydom SJ, Rose WE, Otto DP, et al. Poly(amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine 2013;9:85-93
  • Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity: let’s meet the challenge. Int J Pharm 2010;394:122-42
  • Chen HT, Neerman MF, Parrish AR, et al. Cytotoxicity, haemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 2004;126:10044-8
  • Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013;7:7442-7
  • Varela JA, Bexiga MG, Aberg C, et al. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnology 2012;10:39
  • Chu KS, Hasan W, Rawal S, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine 2013;9:686-93
  • Sarlo K, Blackburn KL, Clark ED, et al. Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology 2009;263:117-26
  • Geraets L, Oomen AG, Schroeter JD, et al. Tissue distribution of inhaled micro- and nano-sized Cerium oxide particles in rats: results from a 28-day exposure study. Toxicol Sci 2012;127:463-73
  • Cho M, Cho WS, Choi M, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 2009;189:177-83
  • Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141:320-7
  • Jaganathan H, Godin B. Biocompatibility of Si-based nano- and micro-particles. Adv Drug Deliv Rev 2012;64:1800-19
  • Dobay MPD, Alberola AP, Mendoza ER, et al. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras. J Nanopart Res 2012;14:821
  • Dukhin AS, Ulberg ZR, Karamushka VI, et al. Peculiarities of live cells’ interaction with micro- and nanoparticles. Adv Colloid Interface Sci 2010;159:60-71
  • Yacobi NR, DeMaio L, Xie J, et al. Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 2008;4:139-45
  • Wei X, Gong C, Gou M, et al. Biodegradable poly(Epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery systems. Int J Pharm 2009;381:1-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.