238
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Delivery aspects of antioxidants in diabetes management

, , &

Bibliography

  • Nathan DM. Initial management of glycemia in type 2 diabetes mellitus. N Engl J Med 2002;347(17):1342-9
  • Philis-Tsimikas A. Type 2 diabetes: limitations of current therapies. Consultant 2009;49(Suppl 7):S5-S11
  • Mazzola N. Review of current and emerging therapies in type 2 diabetes mellitus. Am J Manag Care 2012;18(1):S17-26
  • Johansen JS, Harris AK, Rychly DJ, et al. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 2005;4(1):5
  • Martin-Gallan P, Carrascosa A, Gussinye M, et al. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 2003;34(12):1563-74
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414(6865):813-20
  • Brownlee M. The pathobiology of diabetic complications a unifying mechanism. Diabetes 2005;54(6):1615-25
  • Singh PP, Mahadi F, Roy A, et al. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J Clin Biochem 2009;24(4):324-42
  • Risen P, Nawroth PP, King G, et al. The role of oxidative stress in the onset and progression of diabetes and its complications: asummary of a Congress Series sponsored by UNESCO MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001;17(3):189-212
  • Ha H, Hwang I-A, Park JH, et al. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Practice 2008;82(Suppl 1):S42-5
  • Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress- activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003;52(1):1-8
  • Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Rev Endocrinol 2008;4(5):285-93
  • Yamamoto Y, Gaynor RB. Role of the NF-kB pathway in the pathogenesis of human disease states. Curr Mol Med 2001;1(3):287-96
  • Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002;23(5):599-622
  • Golbidi S, Alireza Ebadi S, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev 2011;7:2.106-25
  • Maritim AC, Sanders RA, Watkins IJB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17(1):24-38
  • Rahimi R, Nikfar S, Larijani B, et al. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005;59(7):365-73
  • Dias AS, Porawski M, Alonso M, et al. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 2005;135(10):2299-304
  • Larrosa M, Garcia-Conesa MT, Espin JC, et al. Ellagitannins, ellagic acid and vascular health. Mol Aspects Med 2010;31(6):513-39
  • Holecek V, Rokyta R, Vlasak R. Antioxidants and their gastrointestinal absorption and interferences of their effects. Cesk Fysiol 2008;57(1):24
  • Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000;130(8):2073S-85S
  • Brown JE, Rice-Evans CA. Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radic Res 1998;29(3):247-55
  • Setchell KD, Brown NM, Zimmer-Nechemias L, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 2002;76(2):447-53
  • Hollman PC, Bijsman MN, van Gameren Y, et al. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 1999;31(6):569-73
  • van het Hof KH, West CE, Weststrate JA, et al. Dietary factors that affect the bioavailability of carotenoids. J Nutr 2000;130(3):503-6
  • Mercke Odeberg J, Lignell A, Pettersson A, et al. Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur J Pharm Sci 2003;19(4):299-304
  • Hadley CW, Miller EC, Schwartz SJ, et al. Tomatoes, lycopene, and prostate cancer: progress and promise. Exp Biol Med 2002;227(10):869-80
  • Piskula MK. Factors affecting flavonoids absorption. Biofactors 2000;12(1-4):175-80
  • Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12(3):413-20
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23(1):3-25
  • Thompson TN. Early ADME in support of drug discovery: the role of metabolic stability studies. Curr Drug Metab 2000;1(3):215-41
  • Ratnam DV, Ankola DD, Bhardwaj V, et al. Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 2006;113(3):189-207
  • Graumlich JF, Ludden TM, Conry-Cantilena C, et al. Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm Res 1997;14(9):1133-9
  • Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA 1996;93(8):3704-9
  • Esposito E, Cervellati F, Menegatti E, et al. Spray dried Eudragit microparticles as encapsulation devices for vitamin C. Int J Pharm 2002;242(1):329-34
  • Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 2006;40(5):445-53
  • Ficarra R, Tommasini S, Raneri D, et al. Study of flavonoids/beta – cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal 2002;29(6):1005-14
  • Lucas-Abellán C, Fortea I, Gabaldón JA, et al. Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH. J Agric Food Chem 2007;56(1):255-9
  • Lirussi F, Beccarello A, Zanette G, et al. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr Metab 2002;15(4):222-31
  • Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012;8(1):2091-9
  • Ansari KA, Vavia PR, Trotta F, et al. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011;12(1):279-86
  • Sapino S, Carlotti M, Cavalli R, et al. Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J Incl Phenom Macrocycl Chem 2013;75(1-2):69-76
  • Christofidou-Solomidou M, Muzykantov VR. Antioxidant strategies in respiratory medicine. Treat Respir Med 2006;5(1):47-78
  • Beckman JS, Minor R, White C, et al. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 1988;263(14):6884-92
  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 2001;22(5):405-17
  • Apiclin P, Gasperlin M, Kmetec V. Stability of ascorbyl palmitate in topical microemulsions. Int J Pharm 2001;222(2):271-9
  • Tailor N, Sharma M. Antioxidant hybrid compounds: a promising therapeutic intervention in oxidative stress induced diseases. Mini Rev Med Chem 2013;13(2):280-97
  • van den Berg R, Haenen GRMM, van den Berg H, et al. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 1999;66(4):511-17
  • Yoo NY, Youn YS, Oh NM, et al. Antioxidant encapsulated porous poly (lactide-co-glycolide) microparticles for developing long acting inhalation system. Colloids Surf B Biointerfaces 2011;88(1):419-24
  • Lee S, Yang SC, Heffernan MJ, et al. Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjugate Chem 2007;18(1):4-7
  • Sansone F, Picerno P, Mencherini T, et al. Flavonoid microparticles by spray-drying: influence of enhancers of the dissolution rate on properties and stability. J Food Eng 2011;103(2):188-96
  • Merrell JG, McLaughlin SW, Tie L, et al. Curcumin-loaded poly (epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol 2009;36(12):1149-56
  • Delie F. Evaluation of nano-and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev 1998;34(2):221-33
  • Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 2001;50(1):107-42
  • Sonaje K, Italia JL, Sharma G, et al. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm Res 2007;24(5):899-908
  • Ratnam DV, Chandraiah G, Meena AK, et al. The co-encapsulated antioxidant nanoparticles of ellagic acid and coenzyme Q10 ameliorates hyperlipidemia in high fat diet fed rats. J Nanosci Nanotechnol 2009;9(11):6741-6
  • Hsu C-H, Cui Z, Mumper RJ, et al. Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors. AAPS PharmSciTech 2003;4(3):24-35
  • Grama CN, Suryanarayana P, Patil MA, et al. Efficacy of Biodegradable Curcumin Nanoparticles in Delaying Cataract in Diabetic Rat Model. PLoS ONE 2013;8(10):e78217
  • Hu B, Ting Y, Zeng X, et al. Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (−)-epigallocatechin-3-gallate. J Agric Food Chem 2013;61(4):875-81
  • Peres I, Rocha S, Gomes J, et al. Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydr Polym 2011;86(1):147-53
  • BarathManiKanth S, Kalishwaralal K, Sriram M, et al. Research anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 2010;8:16
  • Mohammad G, Mishra VK, Pandey HP. Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Dig J Nanomater Biostruct 2008;3:159-62
  • Date AA, Desai N, Dixit R, et al. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine 2010;5(10):1595-616
  • Hatanaka J, Chikamori H, Sato H, et al. Physicochemical and pharmacological characterization of alpha-tocopherol-loaded nano-emulsion system. Int J Pharm 2010;396(1):188-93
  • Paul D, Dey TK, Mukherjee S, et al. Comparative prophylactic effects of alpha-eleostearic acid rich nano and conventional emulsions in induced diabetic rats. J Food Sci Technol 2014;51(9):1724-36
  • Avramoff A, Khan W, Ezra A, et al. Cyclosporin pro-dispersion liposphere formulation. J Control Release 2012;160(2):401-6
  • Shanmugam S, Baskaran R, Balakrishnan P, et al. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm 2011;79(2):250-7
  • Setthacheewakul S, Mahattanadul S, Phadoongsombut N, et al. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm 2010;76(3):475-85
  • Wu H, Long X, Yuan F, et al. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm Sin B 2014;4:217-26
  • Chen H, Torchilin V, Langer R. Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm Res 1996;13(9):1378-83
  • Takahashi M, Uechi S, Takara K, et al. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 2009;57(19):9141-6
  • Rengel RG, Filipovic-Grcic J, Ceepelak I, et al. The effect of liposomes with superoxide dismutase on A2182 cells. Eur J Pharm Biopharm 2005;60(1):47-51
  • Sinha J, Das N, Basu MK. Liposomal antioxidants in combating ischemia-reperfusion injury in rat brain. Biomed Pharmacother 2001;55(5):264-71
  • Samuni AM, Lipman A, Barenholz Y. Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration. Chem Phys Lipids 2000;105(2):121-34
  • Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007;2(3):289
  • Lacatusu I, Badea N, Murariu A, et al. Antioxidant activity of solid lipid nanoparticles loaded with umbelliferone. Soft Mater 2013;11(1):75-84
  • Ruktanonchai U, Sakulkhu U, Bejrapha P, et al. Effect of lipid types on physicochemical characteristics, stability and antioxidant activity of gamma-oryzanol-loaded lipid nanoparticles. J Microencapsul 2009;26(7):614-26
  • Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007;59(6):478-90
  • Nanjwade BK, Kadam VT, Manvi F. Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10). J Biomed Nanotechnol 2013;9(3):450-60
  • Ruktanonchai U, Bejrapha P, Sakulkhu U, et al. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. AAPS PharmSciTech 2009;10(1):227-34
  • Gokce EH, Korkmaz E, Dellera E, et al. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 2012;7:1841
  • Appendino G, Belcaro G, Cornelli U, et al. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med 2011;53(3 Suppl 1):43-9
  • Loguercio C, Federico A, Trappoliere M, et al. The effect of a silybin-vitamin e-phospholipid complex on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci 2007;52(9):2387-95
  • Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006;3(1):139-62
  • Song Z, Feng R, Sun M, et al. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 2011;354(1):116-23
  • Zhu Y, Peng W, Zhang J, et al. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation in vitro and in vivo evaluation. J Funct Foods 2014;8:358-66
  • Amin MA, Abdel-Raheem IT. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol-chitosan hydrogel containing honey bee venom in diabetic rats. Arch Pharm Res 2014;37(8):1016-31
  • Choi DS, Kim S, Lim Y-M, et al. Hydrogel incorporated with chestnut honey accelerates wound healing and promotes early HO-1 protein expression in diabetic (db/db) mice. Tissue Eng Regen Med 2012;9(1):36-42
  • Ishida M, Sakai H, Sugihara S, et al. Controlled release of vitamin E from thermo-responsive polymeric physico-gel. Chem Pharm Bull(Tokyo) 2003;51(11):1348-9
  • Lee Y-H, Chang J-J, Chien C-T, et al. Antioxidant sol-gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Exp Diabetes Res 2012;2012:504693
  • Behl G, Sharma M, Dahiya S, et al. Synthesis, characterization, and evaluation of radical scavenging ability of ellagic acid-loaded nanogels. J Nanomater 2011;2011:21
  • Behl G, Sharma M, Sikka M, et al. Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: synthesis, characterization, and antioxidant activity. J Biomater Sci Polym Ed 2013;24(7):865-81
  • Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012;82(1):1-18
  • Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007;47:629-56
  • Smith RA, Porteous CM, Coulter CV, et al. Selective targeting of an antioxidant to mitochondria. Eur J Pharm Biopharm 1999;263(3):709-16
  • Matthews RT, Yang L, Browne S, et al. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 1998;95(15):8892-7
  • Miquel J, Ferrandiz ML, De Juan E, et al. N-Acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Environ Toxicol Pharmacol 1995;292(3):333-5
  • Sokol RJ, McKim JM, Goff MC, et al. Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat. Gastroenterology 1998;114(1):164-74
  • Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 2007;151(8):1154-65
  • Szeto HH. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 2006;8(3):E521-E31
  • Zhao K, Zhao G-M, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 2004;279(33):34682-90
  • Murphy MP. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 1997;15(8):326-30
  • Verner K, Lemire BD. Tight folding of a passenger protein can interfere with the targeting function of a mitochondrial presequence. EMBO J 1989;8(5):1491
  • Yasuzaki Y, Yamada Y, Harashima H. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem Biophys Res Commun 2010;397(2):181-6
  • Yamada Y, Akita H, Kamiya H, et al. MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 2008;1778(2):423-32
  • Weissig V, Cheng S-M, D’Souza GG. Mitochondrial pharmaceutics. Mitochondrion 2004;3(4):229-44
  • Wang X-X, Li Y-B, Yao H-J, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011;32(24):5673-87
  • Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA 2012;109(40):16288-93
  • Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009;5(18):2067-76
  • Esumi K, Houdatsu H, Yoshimura T. Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004;20(7):2536-8
  • Fu N, Zhou Z, Jones TB, et al. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention. Int J Pharm 2011;413(1):155-66
  • Taylor J, Taylor JRN, Belton PS, et al. Kafirin microparticle encapsulation of catechin and sorghum condensed tannins. J Agric Food Chem 2009;57(16):7523-8
  • Giovagnoli S, Luca G, Casaburi I, et al. Long-term delivery of superoxide dismutase and catalase entrapped in poly (lactide-co-glycolide) microspheres: in vitro effects on isolated neonatal porcine pancreatic cell clusters. J Control Release 2005;107(1):65-77
  • Scalia S, Mezzena M. Incorporation of quercetin in lipid microparticles: effect on photo-and chemical-stability. J Pharm Biomed Anal 2009;49(1):90-4
  • Harris R, Lecumberri E, Mateos-Aparicio I, et al. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym 2011;84(2):803-6
  • Balakrishnan P, Lee B-J, Oh DH, et al. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm 2009;374(1):66-72
  • Caddeo C, Teskac K, Sinico C, et al. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int J Pharm 2008;363(1):183-91
  • Yuan Z-P, Chen L-J, Fan L-Y, et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 2006;12(10):3193-9
  • Landi-Librandi AP, de Oliveira CA, Caleiro Seixas Azzolini AE, et al. In vitro evaluation of the antioxidant activity of liposomal flavonols by the HRP-H2O2-luminol system. J Microencapsul 2011;28(4):258-67
  • Wu T-H, Yen F-L, Lin L-T, et al. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm 2008;346(1):160-8
  • Murugeshu A, Astete C, Leonardi C, et al. Chitosan/PLGA particles for controlled release of alpha-tocopherol in the GI tract via oral administration. Nanomedicine 2011;6(9):1513-28
  • Anand P, Nair HB, Sung B, et al. rDesign of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 2010;79(3):330-8
  • Kim D-G, Jeong Y-I, Choi C, et al. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Intl J Pharm 2006;319(1):130-8
  • Ribeiro HS, Chu B-S, Ichikawa S, et al. Preparation of nanodispersions containing beta-carotene by solvent displacement method. Food Hydrocoll 2008;22(1):12-17
  • Oganesyan EA, Miroshnichenko II, Vikhrieva NS, et al. Use of nanoparticles to increase the systemic bioavailability of trans-resveratrol. Pharm Chem J 2010;44(2):74-6
  • Kulkamp IC, Rabelo BD, Berlitz SJ, et al. Nanoencapsulation improves the in vitro antioxidant activity of lipoic acid. J Biomed Nanotechnol 2011;7(4):598-607
  • Dziubla TD, Karim A, Muzykantov VR. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J Control Release 2005;102(2):427-39

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.