613
Views
22
CrossRef citations to date
0
Altmetric
Review

Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01

&

Bibliography

  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004;431(7006):343–9
  • Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004;431(7006):371-8
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-97
  • Crooke ST. Progress in antisense technology: the end of the beginning. Methods Enzymol 2000;313:3-45
  • Muntoni F, Wood MJ. Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 2011;10(8):621-37
  • Wang Y, Huang L. A window onto siRNA delivery. Nat Biotechnol 2013;31(7):611-12
  • Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003;270(8):1628-44
  • Grunweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2’-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003;31(12):3185-93
  • Agrawal S, Zhao Q. Mixed backbone oligonucleotides: improvement in oligonucleotide-induced toxicity in vivo. Antisense Nucleic Acid Drug Dev 1998;8(2):135-9
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327(5962):198-201
  • Zheng J, Zhang L, Zhang J, et al. Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation. FASEB J 2013;27(10):4017-26
  • Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003;13(2):83-105
  • Ueno Y, Kawada K, Naito T, et al. Synthesis and silencing properties of siRNAs possessing lipophilic groups at their 3’-termini. Bioorg Med Chem 2008;16(16):7698-704
  • Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005;33(1):439-47
  • Wu SY, Yang X, Gharpure KM, et al. 2’-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nat Commun 2014;5:3459
  • Krieg A, Tonkinson J, Matson S, et al. Modification of antisense phosphodiester oligodeoxynucleotides by a 5’ cholesteryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sci USA 1993;90:1048-52
  • Epa WR, Rong P, Bartlett PF, et al. Enhanced downregulation of the p75 nerve growth factor receptor by cholesteryl and bis-cholesteryl antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 1998;8:489-98
  • Park JK, Kogure T, Nuovo GJ, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res 2011;71:7608-16
  • Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 2013;587:1693-702
  • Madani F, Lindberg S, Langel U, et al. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011;2011:414729
  • Martin I, Teixido M, Giralt E. Intracellular fate of peptide-mediated delivered cargoes. Curr Pharm Des 2013;19:2924-42
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55:1189-93
  • Pooga M, Hallbrink M, Zorko M, et al. Cell penetration by transportan. FASEB J 1998;12:67-77
  • Prater CE, Miller PS. 3’-methylphosphonate-modified oligo-2’-O-methylribonucleotides and their Tat peptide conjugates: uptake and stability in mouse fibroblasts in culture. Bioconjug Chem 2004;15:498-507
  • Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014;20:760-84
  • Ishihara T, Goto M, Kodera K, et al. Intracellular delivery of siRNA by cell-penetrating peptides modified with cationic oligopeptides. Drug Deliv 2009;16:153-9
  • Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014;66:110-16
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441:111-14
  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28:172-6
  • Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 2012;51:8529-33
  • Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, Phase I trial. Lancet 2014;383(9911):60-8
  • Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013;369:819-29
  • Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008;26:561-9
  • Love KT, Mahon KP, Levins CG, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 2010;107:1864-9
  • Chono S, Li SD, Conwell CC, et al. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release 2008;131:64-9
  • Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010;18:1650-6
  • Richter AW, Akerblom E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. Int Arch Allergy Appl Immunol 1983;70:124-31
  • Richter AW, Akerblom E. Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Arch Allergy Appl Immunol 1984;74:36-9
  • Chanan-Khan A, Szebeni J, Savay S, et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 2003;14:1430-7
  • Szebeni J, Bedocs P, Rozsnyay Z, et al. Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomedicine 2012;8:176-84
  • Verhoef JJ, Carpenter JF, Anchordoquy TJ, et al. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov Today 2014. [Epub ahead of print]
  • Hashimoto Y, Shimizu T, Mima Y, et al. Generation, characterization and in vivo biological activity of two distinct monoclonal anti-PEG IgMs. Toxicol Appl Pharmacol 2014;277:30-8
  • Garay RP, El-Gewely R, Armstrong JK, et al. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv 2012;9:1319-23
  • Romberg B, Oussoren C, Snel CJ, et al. Pharmacokinetics of poly(hydroxyethyl-l-asparagine)-coated liposomes is superior over that of PEG-coated liposomes at low lipid dose and upon repeated administration. Biochim Biophys Acta 2007;1768:737-43
  • Haeckel A, Appler F, Figge L, et al. XTEN-annexin A5: XTEN allows complete expression of long-circulating protein-based imaging probes as recombinant alternative to PEGylation. J Nucl Med 2014;55:508-14
  • Tari A, Gutierrez-Puente Y, Monaco G, et al. Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts. Int J Oncol 2007;31:1243-50
  • Landen CNJr, Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65:6910-18
  • Verma A, Guha S, Diagaradjane P, et al. Therapeutic significance of elevated tissue transglutaminase expression in pancreatic cancer. Clin Cancer Res 2008;14:2476-83
  • Zhang D, Tari A, Akar U, et al. Silencing kinase-interacting stathmin gene enhances erlotinib sensitivity by inhibiting Ser(1) p27 phosphorylation in epidermal growth factor receptor-expressing breast cancer. Mol Cancer Ther 2010;9:3090-9
  • Tekedereli I, Alpay SN, Tavares CD, et al. Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer. PLoS One 2012;7(7):e41171
  • Mehta R, Lopez-Berestein G, Hopfer R, et al. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta 1984;770:230-4
  • Juliano RL, Lopez-Berestein G, Hopfer R, et al. Selective toxicity and enhanced therapeutic index of liposomal polyene antibiotics in systemic fungal infections. Ann N Y Acad Sci 1985;446:390-402
  • Mehta RT, Mehta K, Lopez-Berestein G, et al. Effect of liposomal amphotericin B on murine macrophages and lymphocytes. Infect Immun 1985;47:429-33
  • Mehta RT, Hopfer RL, Gunner LA, et al. Formulation, toxicity, and antifungal activity in vitro of liposome-encapsulated nystatin as therapeutic agent for systemic candidiasis. Antimicrob Agents Chemother 1987;31:1897-900
  • Mehta RT, Hopfer RL, McQueen T, et al. Toxicity and therapeutic effects in mice of liposome-encapsulated nystatin for systemic fungal infections. Antimicrob Agents Chemother 1987;31:1901-3
  • Lautersztain J, Perez-Soler R, Khokhar AR, et al. Pharmacokinetics and tissue distribution of liposome-encapsulated cis-bis-N-decyl-iminodiacetato-1,2-diaminocyclohexane-platinum (II). Cancer Chemother Pharmacol 1986;18:93-7
  • Lowenstein E, Daly R, Batzer A, et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992;70:431-42
  • Rozakis-Adcock M, McGlade J, Mbamalu G, et al. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 1992;360:689-92
  • Olivier J, Raabe T, Henkemeyer M, et al. A Drosophila SH2-SH3 adaptor protein implicated in coupling the Sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange. Sos. Cell 1993;73:179-91
  • Rozakis Adcock M, Fernley R, Wade J, et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 1993;363(6424):83-5
  • Gale NW, Kaplan S, Lowenstein EJ, et al. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 1993;363:88-92
  • Arvidsson AK, Rupp E, Nanberg E, et al. Tyr-716 in the platelet-derived growth factor beta-receptor kinase insert is involved in GRB2 binding and Ras activation. Mol Cell Biol 1994;14:6715-26
  • Skolnik E, Batzer A, Li N, et al. The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science 1993;260:1953-5
  • Lee CH, Li W, Nishimura R, et al. Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Proc Natl Acad Sci USA 1993;90:11713-17
  • Meyer S, LaBudda K, McGlade J, et al. Analysis of the role of the Shc and Grb2 proteins in signal transduction by the v-ErbB protein. Mol Cell Biol 1994;14:3253-62
  • Dikic I, Schlessinger J, Lax I. PC12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differentiation. Curr Biol 1994;4:702-8
  • Pendergast A, Quilliam L, Cripe L, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175-85
  • Schlaepfer DD, Hanks SK, Hunter T, et al. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994;372:786-91
  • Janes P, Daly R, deFazio A, et al. Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 1994;9:3601-8
  • Sieh M, Batzer A, Schlessinger J, et al. GRB2 and phospholipase C-gamma 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol Cell Biol 1994;14:4435-42
  • Saleem A, Kharbanda S, Yuan ZM, et al. Monocyte colony-stimulating factor stimulates binding of phosphatidylinositol 3-kinase to Grb2.Sos complexes in human monocytes. J Biol Chem 1995;270:10380-3
  • Mohammadi M, Dikic I, Sorokin A, et al. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 1996;16:977-89
  • Rodrigues GA, Park M, Schlessinger J. Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J 1997;16:2634-45
  • Riera L, Lasorsa E, Ambrogio C, et al. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth. J Biol Chem 2010;285:26441-50
  • Thomas SM, DeMarco M, D’Arcangelo G, et al. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 1992;68:1031-40
  • Mitra G, Weber M, Stacey D. Multiple pathways for activation of MAP kinases. Cell Mol Biol Res 1993;39:517-23
  • Gallego C, Gupta SK, Heasley LE, et al. Mitogen-activated protein kinase activation resulting from selective oncogene expression in NIH 3T3 and rat 1a cells. Proc Natl Acad Sci USA 1992;89:7355-9
  • Williams NG, Paradis H, Agarwal S, et al. Raf-1 and p21v-ras cooperate in the activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 1993;90:5772-6
  • Franke T, Yang S, Chan T, et al. The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995;81:727-36
  • Burgering B, Coffer P. Protein kinase B (c-Akt) in phosphatidylinositol 3-OH kinase signal transduction. Nature 1995;376:599-602
  • Datta K, Bellacosa A, Chan T, et al. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 1996;271:30835-9
  • Marte B, Rodriguez-Viciana P, Wennstrom S, et al. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997;7:63-70
  • Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997;385:544-8
  • Pritchard-Jones K, King-Underwood L. The Wilms tumour gene WT1 in leukaemia. Leuk Lymphoma 1997;27:207-20
  • Khwaja A, Rodriguez-Viciana P, Wennstrom S, et al. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997;16:2783-93
  • Chardin P, Camonis J, Gale N, et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 1993;260:1338-43
  • McPherson PS, Czernik AJ, Chilcote TJ, et al. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci USA 1994;91:6486-90
  • Seedorf K, Kostka G, Lammers R, et al. Dynamin binds to SH3 domains of phospholipase C gamma and GRB-2. J Biol Chem 1994;269:16009-14
  • Tanaka S, Morishita T, Hashimoto Y, et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci USA 1994;91:3443-7
  • Donovan JA, Wange RL, Langdon WY, et al. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem 1994;269:22921-4
  • Odai H, Sasaki K, Iwamatsu A, et al. The proto-oncogene product c-Cbl becomes tyrosine phosphorylated by stimulation with GM-CSF or Epo and constitutively binds to the SH3 domain of Grb2/Ash in human hematopoietic cells. J Biol Chem 1995;270:10800-5
  • Meisner H, Conway BR, Hartley D, et al. Interactions of Cbl with Grb2 and phosphatidylinositol 3’-kinase in activated Jurkat cells. Mol Cell Biol 1995;15:3571-8
  • Lepley R, Fitzpatrick F. 5-lipooxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins. J Biol Chem 1994;269:24163-8
  • Ohmichi M, Matuoka K, Takenawa T, et al. Growth factors differentially stimulate the phosphorylation of Shc proteins and their association with Grb2 in PC-12 pheochromocytoma cells. J Biol Chem 1994;269:1143-8
  • Wang J, Auger K, Jarvis L, et al. Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 1995;270:12774-80
  • Holgado-Madruga M, Emlet D, Moscatello D, et al. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 1996;379:560-4
  • Robinson A, Gibbins J, Rodriguez-Linares B, et al. Characterization of Grb2-binding proteins in human platelets activated by Fc gamma RIIA cross-linking. Blood 1996;88:522-30
  • Tortora G, Damiano V, Bianco C, et al. The RIa subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor. Oncogene 1997;14:923-8
  • Nishida M, Nagata K, Hachimori Y, et al. Novel recognition mode between Vav and Grb2 SH3 domains. EMBO J 2001;20:2995-3007
  • Tari A, Arlinghaus R, Lopez-Berestein G. Inhibition of Grb2 and Crkl proteins results in growth inhibition of Philadelphia chromosome positive leukemic cells. Biochem Biophys Res Commun 1997;235:383-8
  • Tari A, Hung MC, Li K, et al. Growth inhibition of breast cancer cells by Grb2 downregulation is correlated with inactivation of mitogen-activated protein kinase in EGFR, but not in ErbB2, cells. Oncogene 1999;18:1325-32
  • Lim SJ, Lopez-Berestein G, Hung MC, et al. Grb2 downregulation leads to Akt inactivation in heregulin-stimulated and ErbB2-overexpressing breast cancer cells. Oncogene 2000;19:6271-6
  • Zang XP, Siwak DR, Nguyen TX, et al. KGF-induced motility of breast cancer cells is dependent on Grb2 and Erk1,2. Clin Exp Metastasis 2004;21:437-43
  • Lin F, Monaco G, Sun T, et al. BCR gene expression blocks Bcr-Abl induced pathogenicity in a mouse model. Oncogene 2001;20:1873-81
  • Carver K, Ming X, Juliano RL. Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol Ther Nucleic Acids 2014;3:e153
  • Bogdahn U, Hau P, Stockhammer G, et al. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled Phase IIb study. Neuro Oncol 2011;13:132-42
  • Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a Phase I, randomised, first-in-man study. Lancet Neurol 2013;12:435-42
  • Gilleron J, Querbes W, Zeigerer A, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 2013;31:638-46
  • Lu JJ, Langer R, Chen J. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm 2009;6:763-71
  • Ming X, Sato K, Juliano RL. Unconventional internalization mechanisms underlying functional delivery of antisense oligonucleotides via cationic lipoplexes and polyplexes. J Control Release 2011;153:83-92
  • Ming X, Carver K, Fisher M, et al. The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides. Nucleic Acids Res 2013;41:3673-87
  • Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 2013;31:653-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.