510
Views
30
CrossRef citations to date
0
Altmetric
Review

Recent advances in the role of supramolecular hydrogels in drug delivery

, , , &

Bibliography

  • Sharpe LA, Daily MA, Horava SD, et al. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 2014;11:901-15
  • Kirschner CM, Anseth KS. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta mater 2013;61(3):931-44
  • Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 2012;64:223-36
  • Buwalda SJ, Boere KWM, Dijkstra PJ, et al. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 2014;190:254-73
  • Li J. Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater 2010;2:112-18
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2012;64:49-60
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002;43:3-12
  • Lee SC, Kwon IK, Park K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 2013;65(1):17-20
  • Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev 2012;112:2853-88
  • Censi R, Di Martino P, Vermonden T, et al. Hydrogels for protein delivery in tissue engineering. J Control Release 2012;161(2):680-92
  • Ahmad N, Amin MCIM, Mahali SM, et al. Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol Pharm 2014;11(11):4130-42
  • Li J, Li X, Ni X, et al. Self assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 2006;27:4132-40
  • Tan S, Ladewig K, Fu Q, et al. Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun 2014;35:1166-84
  • Lehn J-M. Perspectives in supramolecular chemistry – from molecular recognition towards molecular Information processing and self-organization. Angew Chem Int Ed Engl 1990;29:1304-19
  • Lehn J-M. Supramolecular chemistry – scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed Engl 1988;27:89-112
  • Appel WP, Nieuwenhuizen MM, Meijer E. Multiple hydrogen-bonded supramolecular polymers. Supramol Polym Chem 2011;1:3
  • Harada A. Supramolecular hydrogels. In: Kobayashi S, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Springer; Berlin Heidelberg: 2014. p. 1-7
  • Appel EA, del Barrio J, Loh XJ, et al. Supramolecular polymeric hydrogels. Chem Soc Rev 2012;41:6195-214
  • Ye E, Chee PL, Prasad A, et al. Supramolecular soft biomaterials for biomedical applications. Mater Today 2014;17:194-202
  • del Barrio J, Appel EA, Jun Loh X, et al. Supramolecular hydrogels. In: Polymeric and self assembled hydrogels: from fundamental understanding to applications. The Royal Society of Chemistry; Cambridge, UK: 2013. p. 39-71
  • Menger FM, Caran KL. Anatomy of a gel. Amino acid derivatives that rigidify water at submillimolar concentrations. J Am Chem Soc 2000;122(47):11679-91
  • Li J, Harada A, Kamachi M. Sol–gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution. Polym J 1994;26:1019-26
  • Khodaverdi E, Heidari Z, Tabassi SAS, et al. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech 2014;1-10 10.1208/s12249-014-0198-4
  • Li Z, Yin H, Zhang Z, et al. Supramolecular anchoring of DNA polyplexes in cyclodextrin-based polypseudorotaxane hydrogels for sustained gene delivery. Biomacromolecules 2012;13(10):3162-72
  • Kuang H, He H, Zhang Z, et al. Injectable and biodegradable supramolecular hydrogels formed by nucleobase-terminated poly (ethylene oxide) s and α-cyclodextrin. J Mater Chem B 2014;2(6):659-67
  • Yu J, Ha W, Sun J, et al. Supramolecular hybrid hydrogel based on host-guest interaction and its application in drug delivery. ACS Appl Mater Interfaces 2014;6(22):19544-51
  • Tabassi SAS, Tekie FSM, Hadizadeh F, et al. Sustained release drug delivery using supramolecular hydrogels of the triblock copolymer PCL–PEG–PCL and α-cyclodextrin. J Sol-Gel Sci Technol 2014;69(1):166-71
  • Jung H, Park KM, Yang JA, et al. Theranostic systems assembled in situ on demand by host-guest chemistry. Biomaterials 2011;32:7687-94
  • Lin Y, Li L, Li G. A new supramolecular gel via host–guest complexation with cucurbit[8]uril and N-(4-diethylaminobenzyl)chitosan. Carbohydr Polym 2013;92:429-34
  • Appel EA, Loh XJ, Jones ST, et al. Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials 2012;33:4646-52
  • Li Y, Fukushima K, Coady DJ, et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem Int Ed Engl 2013;52(2):674-8
  • Saha S, Bachl J, Kundu T, et al. Dissolvable metallohydrogels for controlled release: evidence of a kinetic supramolecular gel phase intermediate. Chem Commun 2014;50(53):7032-5
  • Bastings MMC, Koudstaal S, Kieltyka RE, et al. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 2014;3:70-8
  • Dankers PYW, van Luyn MJA, Huizinga-van der VA, et al. Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials 2012;33:5144-55
  • Seiffert S, Sprakel J. Physical chemistry of supramolecular polymer networks. Chem Soc Rev 2012;41:909-30
  • Steed JW, Atwood JL. Supramolecular chemistry. Wiley; New York: 2000
  • Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin−guest interactions. Acc Chem Res 2014;47:2128-40
  • Hu Q-D, Tang G-P, Chu PK. Cyclodextrin-based host−guest supramolecular nanoparticles for delivery: from design to applications. Acc Chem Res 2014;47:2017-25
  • Bender ML, Komiyama M. Cyclodextrin chemistry; reactivity and structure concepts in organic chemistry. Springer; Berlin: 1978
  • Harada A, Li J, Kamachi DM. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 1992;356:325-7
  • Sabadini E, Cosgrove T. Inclusion complex formed between starpoly(ethylene glycol) and cyclodextrins. Langmuir 2003;19:9680-3
  • Huang J, Hao J, Anderson PD, et al. Supramolecular hydrogels based on cyclodextrin poly(pseudo)rotaxane for new and emerging biomedical applications. Scrivener Publishing; Beverly, MA: 2014
  • Hattori K, Matsumura Y, Miyazaki T, et al. Successive beckmann rearrangement-alkylation sequence by organoaluminum reagents. Simple route to dl-pumiliotoxin C. J Am Chem Soc 1981;103:7368-70
  • Day A, Arnold AP, Blanch RJ, et al. Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem 2001;66:8094-100
  • Lee JW, Samal S, Selvapalam N, et al. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 2003;36:621-30
  • Biedermann F, Scherman OA. Cucurbit[8]uril mediated donor–acceptor ternary complexes: a model system for studying charge-transfer interactions. J Phys Chem B 2012;116:2842-9
  • Appel EA, Biedermann F, Rauwald U, et al. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J Am Chem Soc 2010;132:14251-360
  • Park KM, Yang J-A, Jung H, et al. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 2012;6:2960-8
  • Matsumoto S, Yamaguchi S, Ueno S, et al. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Chem Eur J 2008;14:3977-86
  • Tamaru SI, Kiyonaka S, Hamachi I. Three distinct read-out modes for enzyme activity can operate in a semi-wet supramolecular hydrogel. Chem Eur J 2005;24:7294-304
  • Chikkaveeraiah BV, Bhirde A, Morgan NY, et al. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012;6:6546-61
  • Zhou M, Sun Z, Shen C, et al. Application of hydrogel prepared from ferrocene functionalized amino acid in the design of novel electrochemical immunosensing platform. Biosens Bioelectron 2013;49:241-8
  • Ehrbar M, Rizzi SC, Schoenmakers RG, et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 2007;8:3000-7
  • Tran NQ, Joung YK, Lih E, et al. RGD-conjugated in situ forming hydrogels as cell-adhesive injectable scaffolds. Macromol Res 2011;19:300-6
  • Wang W, Wang H, Ren C, et al. A saccharide-based supramolecular hydrogel for cell culture. Carbohydr Res 2011;346:1013-17
  • Xu K, Ge W, Liang G, et al. Bisphosphonate-containing supramolecular hydrogels for topical decorporation of uranium-contaminated wounds in mice. Int J Radiat Biol 2008;84:353-62
  • Yang Z, Liang G, Ma M, et al. D-glucosamine-based supramolecular hydrogels to improve wound healing. Chem Commun 2007;7:843-5
  • Cui H, Cui L, Zhang P, et al. In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair. Macromol Biosci 2014;14:440-50
  • Hu Y, Wang H, Wang J, et al. Supramolecular hydrogels inspired by collagen for tissue engineering. Org Biomol Chem 2010;21:3267-71
  • Ooya T, Yui N. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier. J Biomater Sci Polym Ed 1997;8:437-55
  • Ooya T, Yui N. Synthesis of a theophylline-polyrotaxane conjugate and its drug release via supramolecular dissociation. J Control Release 1999;58:251-69
  • Yamashita A, Yui N, Ooya T, et al. Synthesis of a biocleavable polyrotaxane-plasmid DNA (pDNA) polyplex and its use for the rapid nonviral delivery of pDNA to cell nuclei. Nat Protoc 2006;1:2861-9
  • Sui K, Gao S, Wu W, et al. Injectable supramolecular hybrid hydrogels formed by MWNT-grafted-Poly(ethylene glycol) and α-Cyclodextrin. J Polym Sci A Polym Chem 2010;48:3145-51
  • Kulkarni A, DeFrees K, Schuldt RA. Cationic α-cyclodextrin:poly(ethylene glycol) polyrotaxanes for siRNA delivery. Mol Pharm 2013;10:1299-305
  • Ma D, Zhang HB, Chen DH, et al. Novel supramolecular gelation route to in situ entrapment and sustained delivery of plasmid DNA. J Colloid Interface Sci 2011;364:566-73
  • Ha W, Yu J, Song XY, et al. Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a co-delivery system. ACS Appl Mater Interfaces 2014;6:10623-30
  • He B, Zeng J, Nie Y, et al. In situ gelation of supramolecular hydrogel for anti-tumor drug delivery. Macromol Biosci 2009;9:1169-75
  • Jun L, Xiping N, Leong KW. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and α-cyclodextrin. J Biomed Mater Res A 2003;65:196-202
  • Li X, Li J. Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (ϵ-caprolactone) diblock copolymer and α-cyclodextrin and their controlled release property. J Biomed Mater Res A 2008;86A:1055-61
  • Wu D-Q, Wang T, Lu B, et al. Fabrication of Supramolecular Hydrogels for Drug Delivery and Stem Cell Encapsulation. Langmuir 2008;24:10306-12
  • Jiang X, Wang T, Li X, et al. Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction. J Biomed Mater Res A 2009;90A:472-7
  • Wang T, Jiang X-J, Lin T, et al. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 2009;30:4161-7
  • Chen Y, Pang XH, Dong CM. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host–guest chemistry. Adv Funct Mater 2010;20:579-86
  • Khodaverdi E, Aboumaashzadeh M, Tekie FSM, et al. Sustained drug release using supramolecular hydrogels composed of cyclodextrin inclusion complexes with PCL/PEG multiple block copolymers. Iran Polym J 2014;23(9):707-16
  • Zhu W, Li Y, Liu L, et al. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and γ-cyclodextrins with a stepwise delivery property. Biomacromolecules 2010;11:3086-92
  • Zhu W, Li Y, Liu L, et al. Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Int J Pharm 2012;437:11-19
  • Larraneta E, Isasi JR. Non-covalent hydrogels of cyclodextrins and poloxamines for the controlled release of proteins. Carbohydr Polym 2014;102:674-81
  • Simões SMN, Veiga F, Torres-Labandeira JJ, et al. Syringeable pluronic–α-cyclodextrin supramolecular gels for sustained delivery of vancomycin. Eur J Pharm Biopharm 2012;80:103-12
  • Cheng QY, Han BH. Supramolecular hydrogel based on graphene oxides for controlled release system. J Nanosci Nanotechnol 2013;13:755-60
  • Liu Z, Yao P. Versatile injectable supramolecular hydrogels containing drug loaded micelles for delivery ofvarious drugs. Polym Chem 2014;5:1072-81
  • Hu X, Li D, Tan H, Pan C, Chen X. Injectable graphene oxide/graphene composite supramolecular hydrogel for delivery of anti-cancer drugs. J Macromol Sci A 2014;51:378-84
  • Guo DS, Wang K, Wang YX, et al. Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 2012;134:10244-50
  • Liang G, Yang Z, Zhang R, et al. Supramolecular hydrogel of a d-amino acid dipeptide for controlled drug release in vivo. Langmuir 2009;25(15):8419-22
  • Tao CA, Wang J, Qin S, et al. Fabrication of pH-sensitive graphene oxide–drug supramolecular hydrogels as controlled release systems. J Mater Chem 2012;22:24856-61
  • Zhang A, Yang L, Lin Y, et al. Supramolecular elastomer based on polydimethylsiloxanes (SESi) film: synthesis, characterization, biocompatibility, and its application in the context of wound dressing. J Biomater Sci Polym Ed 2013;25:1882-99
  • Gao Y, Kuang Y, Guo ZF, et al. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 2009;131:13576-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.