235
Views
35
CrossRef citations to date
0
Altmetric
Review

Transactivating transcriptional activator-mediated drug delivery

&
Pages 177-190 | Published online: 28 Feb 2006

Bibliography

  • GREEN M, LOEWENSTEIN PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus TAT trans-activator protein. Cell (1988) 55:1179-1188.
  • FRANKEL AD, PABO CO: Cellular uptake of the TAT protein from human immunodeficiency virus. Cell (1988) 55:1189-1193.
  • DEROSSI D, JOLIOT AH, CHASSAING G, PROCHIANTZ A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. (1994) 269:10444-10450.
  • ELLIOTT G, O’HARE P: Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell (1997) 88:223-233.
  • POOGA M, HALLBRINK M, ZORKO M, LANGEL U: Cell penetration by transportan. FASEB J. (1998) 12:67-77.
  • OEHLKE J, SCHELLER A, WIESNER B et al.: Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta (1998) 1414:127-139.
  • LINDGREN M, HALLBRINK M, PROCHIANTZ A, LANGEL U: Cell-penetrating peptides. Trends Pharmacol. Sci. (2000) 21:99-103.
  • FUTAKI S, SUZUKI T, OHASHI W et al.: Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. (2001) 276:5836-5840.
  • JOLIOT A, PERNELLE C, DEAGOSTINI-BAZIN H, PROCHIANTZ A: Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA (1991) 88:1864-1868.
  • HALLBRINK M, FLOREN A, ELMQUIST A, POOGA M, BARTFAI T, LANGEL U: Cargo delivery kinetics of cell-penetrating peptides. Biochim. Biophys. Acta (2001) 1515:101-109.
  • LIN YZ, YAO SY, VEACH RA, TORGERSON TR, HAWIGER J: Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. (1995) 270:14255-14258.
  • JEANG KT, XIAO H, RICH EA: Multifaceted activities of the HIV-1 transactivator of transcription, TAT. J. Biol. Chem. (1999) 274:28837-28840.
  • WEEKS KM, AMPE C, SCHULTZ SC, STEITZ TA, CROTHERS DM: Fragments of the HIV-1 TAT protein specifically bind TAR RNA. Science (1990) 249:1281-1285.
  • RUBEN S, PERKINS A, PURCELL R et al.: Structural and functional characterization of human immunodeficiency virus TAT protein. J. Virol. (1989) 63:1-8.
  • CALNAN BJ, BIANCALANA S, HUDSON D, FRANKEL AD: Analysis of arginine-rich peptides from the HIV TAT protein reveals unusual features of RNA-protein recognition. Genes Dev. (1991) 5:201-210.
  • CALNAN BJ, TIDOR B, BIANCALANA S, HUDSON D, FRANKEL AD: Arginine-mediated RNA recognition: the arginine fork. Science (1991) 252:1167-1171.
  • FEINBERG MB, BALTIMORE D, FRANKEL AD: The role of TAT in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA (1991) 88:4045-4049.
  • FAWELL S, SEERY J, DAIKH Y et al.: TAT-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA (1994) 91:664-668.
  • LORET EP, VIVES E, HO PS, ROCHAT H, VAN RIETSCHOTEN J, JOHNSON WC Jr: Activating region of HIV-1 TAT protein: vacuum UV circular dichroism and energy minimization. Biochemistry (1991) 30:6013-6023.
  • VIVES E, BRODIN P, LEBLEU B: A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. (1997) 272:16010-16017.
  • PARK J, RYU J, KIM KA et al.: Mutational analysis of a human immunodeficiency virus type 1 TAT protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol. (2002) 83:1173-1181.
  • SCHWARZE SR, HRUSKA KA, DOWDY SF: Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. (2000) 10:290-295.
  • MITCHELL DJ, KIM DT, STEINMAN L, FATHMAN CG, ROTHBARD JB: Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. (2000) 56:318-325.
  • WENDER PA, MITCHELL DJ, PATTABIRAMAN K, PELKEY ET, STEINMAN L, ROTHBARD JB: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. USA (2000) 97:13003-13008.
  • ROTHBARD JB, KREIDER E, VANDEUSEN CL, WRIGHT L, WYLIE BL, WENDER PA: Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J. Med. Chem. (2002) 45:3612-3618.
  • MANN DA, FRANKEL AD: Endocytosis and targeting of exogenous HIV-1 TAT protein. EMBO J. (1991) 10:1733-1739.
  • DEROSSI D, CALVET S, TREMBLEAU A, BRUNISSEN A, CHASSAING G, PROCHIANTZ A: Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. (1996) 271:18188-18193.
  • SUZUKI T, FUTAKI S, NIWA M, TANAKA S, UEDA K, SUGIURA Y: Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. (2002) 277:2437-2443.
  • RICHARD JP, MELIKOV K, VIVES E et al.: Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. (2003) 278:585-590.
  • SIECZKARSKI SB, WHITTAKER GR: Dissecting virus entry via endocytosis. J. Gen. Virol. (2002) 83:1535-1545.
  • CONSOLE S, MARTY C, GARCIA-ECHEVERRIA C, SCHWENDENER R, BALLMER-HOFER K: Antennapedia and HIV transactivator of transcription (TAT) ‘protein transduction domains’ promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. (2003) 278:35109-35114.
  • LUNDBERG M, WIKSTROM S, JOHANSSON M: Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. (2003) 8:143-150.
  • LEIFERT JA, HARKINS S, WHITTON JL: Full-length proteins attached to the HIV TAT protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. (2002) 9:1422-1428.
  • VIVES E, RICHARD JP, RISPAL C, LEBLEU B: TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci. (2003) 4:125-132.
  • TYAGI M, RUSNATI M, PRESTA M, GIACCA M: Internalization of HIV-1 TAT requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. (2001) 276:3254-3261.
  • SANDGREN S, CHENG F, BELTING M: Nuclear targeting of macromolecular polyanions by an HIV-TAT derived peptide. Role for cell-surface proteoglycans. J. Biol. Chem. (2002) 277:38877-38883.
  • MAI JC, SHEN H, WATKINS SC, CHENG T, ROBBINS PD: Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. (2002) 277:30208-30218.
  • VIOLINI S, SHARMA V, PRIOR JL, DYSZLEWSKI M, PIWNICA-WORMS D: Evidence for a plasma membrane-mediated permeability barrier to TAT basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry (2002) 41:12652-12661.
  • ANDERSON RG: The caveolae membrane system. Ann. Rev. Biochem. (1998) 67:199-225.
  • FITTIPALDI A, FERRARI A, ZOPPE M et al.: Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 TAT fusion proteins. J. Biol. Chem. (2003) 278:34141-34149.
  • FERRARI A, PELLEGRINI V, ARCANGELI C, FITTIPALDI A, GIACCA M, BELTRAM F: Caveolae-mediated internalization of extracellular HIV-1 TAT fusion proteins visualized in real time. Mol. Ther. (2003) 8:284-294.
  • ROTHBARD JB, JESSOP TC, LEWIS RS, MURRAY BA, WENDER PA: Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. (2004) 126:9506-9507.
  • ROTHBARD JB, JESSOP TC, WENDER PA: Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Deliv. Rev. (2005) 57:495-504.
  • SWANSON JA, WATTS C: Macropinocytosis. Trends Cell Biol. (1995) 5:424-428.
  • WADIA JS, STAN RV, DOWDY SF: Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. (2004) 10:310-315.
  • KAPLAN IM, WADIA JS, DOWDY SF: Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release (2005) 102:247-253.
  • NAKASE I, NIWA M, TAKEUCHI T et al.: Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. (2004) 10:1011-1022.
  • POTOCKY TB, MENON AK, GELLMAN SH: Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. (2003) 278:50188-50194.
  • CARON NJ, QUENNEVILLE SP, TREMBLAY JP: Endosome disruption enhances the functional nuclear delivery of TAT-fusion proteins. Biochem. Biophys. Res. Commun. (2004) 319:12-20.
  • ROEDER GE, PARISH JL, STERN PL, GASTON K: Herpes simplex virus VP22-human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammalian cells and induce apoptotic cell death. Biotechnol. Appl. Biochem. (2004) 40:157-165.
  • ZAVAGLIA D, NORMAND N, BREWIS N, O’HARE P, FAVROT MC, COLL JL: VP22-mediated and light-activated delivery of an anti-c-raf1 antisense oligonucleotide improves its activity after intratumoral injection in nude mice. Mol. Ther. (2003) 8:840-845.
  • ZAVAGLIA D, FAVROT MC, EYMIN B, TENAUD C, COLL JL: Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein. Gene Ther. (2003) 10:314-325.
  • POOGA M, SOOMETS U, HALLBRINK M et al.: Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. (1998) 16:857-861.
  • TSENG YL, LIU JJ, HONG RL: Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and TAT: a kinetic and efficacy study. Mol. Pharmacol. (2002) 62:864-872.
  • NAGAHARA H, VOCERO-AKBANI AM, SNYDER EL et al.: Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. (1998) 4:1449-1452.
  • VOCERO-AKBANI A, LISSY NA, DOWDY SF: Transduction of full-length TAT fusion proteins directly into mammalian cells: analysis of T cell receptor activation-induced cell death. Methods Enzymol. (2000) 322:508-521.
  • BECKER-HAPAK M, MCALLISTER SS, DOWDY SF: TAT-mediated protein transduction into mammalian cells. Methods (2001) 24:247-256.
  • SCHWARZE SR, HO A, VOCERO-AKBANI A, DOWDY SF: In vivo protein transduction: delivery of a biologically active protein into the mouse. Science (1999) 285:1569-1572.
  • SCHWARZE SR, DOWDY SF: In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. (2000) 21:45-48.
  • MOY P, DAIKH Y, PEPINSKY B, THOMAS D, FAWELL S, BARSOUM J: TAT-mediated protein delivery can facilitate MHC class I presentation of antigens. Mol. Biotechnol. (1996) 6:105-113.
  • KIM DT, MITCHELL DJ, BROCKSTEDT DG et al.: Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV TAT peptide. J. Immunol. (1997) 159:1666-1668.
  • KWON HY, EUM WS, JANG HW et al.: Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 TAT protein basic domain into mammalian cells. FEBS Lett. (2000) 485:163-167.
  • JIN LH, BAHN JH, EUM WS et al.: Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic. Biol. Med. (2001) 31:1509-1519.
  • EUM WS, JANG SH, KIM DW et al.: Enhanced transduction of Cu,Zn-superoxide dismutase with HIV-1 TAT protein transduction domains at both termini. Mol. Cells (2005) 19:191-197.
  • KABOURIDIS PS, HASAN M, NEWSON J, GILROY DW, LAWRENCE T: Inhibition of NF-kappa B activity by a membrane-transducing mutant of I kappa B alpha. J. Immunol. (2002) 169:2587-2593.
  • GUSTAFSSON AB, SAYEN MR, WILLIAMS SD, CROW MT, GOTTLIEB RA: TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation (2002) 106:735-739.
  • CAO G, PEI W, GE H et al.: In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. (2002) 22:5423-5431.
  • DEL GAIZO V, PAYNE RM: A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol. Ther. (2003) 7:720-730.
  • DEL GAIZO V, MACKENZIE JA, PAYNE RM: Targeting proteins to mitochondria using TAT. Mol. Genet. Metab. (2003) 80:170-180.
  • SHOKOLENKO IN, ALEXEYEV MF, LEDOUX SP, WILSON GL: TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst.). (2005) 4:511-518.
  • SELIVANOVA G, IOTSOVA V, OKAN I et al.: Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. (1997) 3:632-638.
  • HARBOUR JW, WORLEY L, MA D, COHEN M: Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch. Ophthalmol. (2002) 120:1341-1346.
  • SNYDER EL, MEADE BR, SAENZ CC, DOWDY SF: Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol. (2004) 2:E36.
  • PARADA Y, BANERJI L, GLASSFORD J et al.: BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. J. Biol. Chem. (2001) 276:23572-23580.
  • SHIBAGAKI N, UDEY MC: Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J. Immunol. (2002) 168:2393-2401.
  • WANG HY, FU T, WANG G et al.: Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. J. Clin. Invest. (2002) 109:1463-1470.
  • CHAKRABARTI R, WYLIE DE, SCHUSTER SM: Transfer of monoclonal antibodies into mammalian cells by electroporation. J. Biol. Chem. (1989) 264:15494-15500.
  • ARNHEITER H, HALLER O: Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J. (1988) 7:1315-1320.
  • ANDERSON DC, NICHOLS E, MANGER R, WOODLE D, BARRY M, FRITZBERG AR: Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide. Biochem. Biophys. Res. Commun. (1993) 194:876-884.
  • STEIN S, WEISS A, ADERMANN K, LAZAROVICI P, HOCHMAN J, WELLHONER H: A disulfide conjugate between anti-tetanus antibodies and HIV (37-72)TAT neutralizes tetanus toxin inside chromaffin cells. FEBS Lett. (1999) 458:383-386.
  • MIE M, TAKAHASHI F, FUNABASHI H, YANAGIDA Y, AIZAWA M, KOBATAKE E: Intracellular delivery of antibodies using TAT fusion protein A. Biochem. Biophys. Res. Commun. (2003) 310:730-734.
  • NIESNER U, HALIN C, LOZZI L et al.: Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides. Bioconjug. Chem. (2002) 13:729-736.
  • KAISER J: Gene therapy. Side effects sideline hemophilia trial. Science (2004) 304:1423-1425.
  • CHECK E: Gene therapy put on hold as third child develops cancer. Nature (2005) 433:561.
  • TEMPLETON NS: Cationic liposome-mediated gene delivery in vivo. Biosci. Rep. (2002) 22:283-295.
  • BROWN MD, SCHATZLEIN AG, UCHEGBU IF: Gene delivery with synthetic (non viral) carriers. Int. J.Pharm. (2001) 229:1-21.
  • KIRCHEIS R, WIGHTMAN L, WAGNER E: Design and gene delivery activity of modified polyethylenimines. Adv. Drug. Deliv. Rev. (2001) 53:341-358.
  • SNYDER EL, DOWDY SF: Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr. Opin. Mol. Ther. (2001) 3:147-152.
  • EGUCHI A, AKUTA T, OKUYAMA H et al.: Protein transduction domain of HIV-1 TAT protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. (2001) 276:26204-26210.
  • RUDOLPH C, PLANK C, LAUSIER J, SCHILLINGER U, MULLER RH, ROSENECKER J: Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. (2003) 278:11411-11418.
  • IGNATOVICH IA, DIZHE EB, PAVLOTSKAYA AV et al.: Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 TAT protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. (2003) 278:42625-42636.
  • TASCIOTTI E, ZOPPE M, GIACCA M: Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 TAT. Cancer Gene Ther. (2003) 10:64-74.
  • MERILAINEN O, HAKKARAINEN T, WAHLFORS T, PELLINEN R, WAHLFORS J: HIV-1 TAT protein transduction domain mediates enhancement of enzyme prodrug cancer gene therapy in vitro: a study with TAT-TK-GFP triple fusion construct. Int. J. Oncol. (2005) 27:203-208.
  • JOSEPHSON L, TUNG CH, MOORE A, WEISSLEDER R: High-efficiency intracellular magnetic labeling with novel superparamagnetic-TAT peptide conjugates. Bioconjug. Chem. (1999) 10:186-191.
  • LEWIN M, CARLESSO N, TUNG CH et al.: TAT peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. (2000) 18:410-414.
  • DODD CH, HSU HC, CHU WJ et al.: Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods. (2001) 256:89-105.
  • KAUFMAN CL, WILLIAMS M, RYLE LM, SMITH TL, TANNER M, HO C: Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation (2003) 76:1043-1046.
  • ZHAO M, KIRCHER MF, JOSEPHSON L, WEISSLEDER R: Differential conjugation of TAT peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug. Chem. (2002) 13:840-844.
  • TKACHENKO AG, XIE H, LIU Y et al.: Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug. Chem. (2004) 15:482-490.
  • SANTRA S, YANG H, DUTTA D et al.: TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. (Camb.) (2004) 24:2810-2811.
  • STROH M, ZIMMER JP, DUDA DG et al.: Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. (2005) 11:678-682.
  • RUDOLPH C, SCHILLINGER U, ORTIZ A et al.: Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide iin vitro and in vivo. Pharm. Res. (2004) 21:1662-1669.
  • LIU J, ZHANG Q, REMSEN EE, WOOLEY KL: Nanostructured materials designed for cell binding and transduction. Biomacromolecules (2001) 2:362-368.
  • BECKER ML, REMSEN EE, PAN D, WOOLEY KL: Peptide-derivatized shell-cross-linked nanoparticles. 1. Synthesis and characterization. Bioconjug. Chem. (2004) 15:699-709.
  • BECKER ML, BAILEY LO, WOOLEY KL: Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation. Bioconjug. Chem. (2004) 15:710-717.
  • CUI Z, PATEL J, TUZOVA M et al.: Strong T cell type-1 immune responses to HIV-1 TAT (1-72) protein-coated nanoparticles. Vaccine (2004) 22:2631-2640.
  • CAPUTO A, BROCCA-COFANO E, CASTALDELLO A et al.: Novel biocompatible anionic polymeric microspheres for the delivery of the HIV-1 TAT protein for vaccine application. Vaccine (2004) 22:2910-2924.
  • TORCHILIN VP, RAMMOHAN R, WEISSIG V, LEVCHENKO TS: TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA (2001) 98:8786-8791.
  • TORCHILIN VP, LEVCHENKO TS, RAMMOHAN R, VOLODINA N, PAPAHADJOPOULOS-STERNBERG B, D’SOUZA GG: Cell transfection iin vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. USA (2003) 100:1972-1977.
  • MARTY C, MEYLAN C, SCHOTT H, BALLMER-HOFER K, SCHWENDENER RA: Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell. Mol. Life Sci. (2004) 61:1785-1794.
  • HUANG Z, LI W, MACKAY JA, SZOKA FC Jr: Thiocholesterol-based lipids for ordered assembly of bioresponsive gene carriers. Mol. Ther. (2005) 11:409-417.
  • HYNDMAN L, LEMOINE JL, HUANG L, PORTEOUS DJ, BOYD AC, NAN X: HIV-1 TAT protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Release (2004) 99:435-444.
  • FRETZ MM, KONING GA, MASTROBATTISTA E, JISKOOT W, STORM G: OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim. Biophys. Acta (2004) 1665:48-56.
  • POLYAKOV V, SHARMA V, DAHLHEIMER JL, PICA CM, LUKER GD, PIWNICA-WORMS D: Novel TAT-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug. Chem. (2000) 11:762-771.
  • BHORADE R, WEISSLEDER R, NAKAKOSHI T, MOORE A, TUNG CH: Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-TAT derived membrane translocation peptide. Bioconjug. Chem. (2000) 11:301-315.
  • KAUFMAN CL, WILLIAMS M, RYLE LM, SMITH TL, TANNER M, HO C: Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation (2003) 76:1043-1046.
  • FALNES PO, WESCHE J, OLSNES S: Ability of the TAT basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment. Biochemistry (2001) 40:4349-4358.
  • NORI A, JENSEN KD, TIJERINA M, KOPECKOVA P, KOPECEK J: TAT-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug. Chem. (2003) 14:44-50.
  • NORI A, JENSEN KD, TIJERINA M, KOPECKOVA P, KOPECEK J: Subcellular trafficking of HPMA copolymer-TAT conjugates in human ovarian carcinoma cells. J. Control. Release (2003) 91:53-59.
  • NORI A, KOPECEK J: Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. (2005) 57:609-636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.