583
Views
73
CrossRef citations to date
0
Altmetric
Review

Ultrasound-induced cavitation: applications in drug and gene delivery

&
Pages 713-726 | Published online: 31 Oct 2006

Bibliography

  • SUSLICK KS, NYBORG WL: Ultrasound: Its Chemical, Physical, and Biological Effects. Suslick KS (Ed.), VCH Publishers, New York, NY, USA (1988).
  • FLYNN HG: Physics of acoustic cavitation in liquids. In: Physical Acoustics. Mason WP (Ed.), Academic Press, New York, NY, USA (1964).
  • LEIGHTON TG: The Acoustic Bubble. Leighton TG (Ed.), Academic Press, San Deigo, CA, USA (1997):613.
  • FLANNIGAN DJ, SUSLICK KS: Plasma formation and temperature measurement during single-bubble cavitation. Nature (2005) 434(7029):52-55.
  • PECHA R, GOMPF B: Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. (2000) 84(6):1328-1330.
  • POPINET S, ZALESKI S: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. (2002) 464:137-163.
  • LIGHTHILL J: Acoustic streaming. J. Sound Vibration (1978) 61(3):564.
  • ELDER SA: Cavitation microstreaming. J. Acoust. Soc. Am. (1959) 31(1):54-64.
  • NYBORG WL: Ultrasonic microstreaming and related phenomena. Br. J. Cancer Suppl. (1982) 45(5):156-160.
  • MARMOTTANT P, HILGENFELDT S: Controlled vesicle deformation and lysis by single oscillating bubbles. Nature (2003) 423(6936):153-156.
  • MILLER DL, BAO S, MORRIS JE: Sonoporation of cultured cells in the rotating tube exposure system. Ultrasound Med. Biol. (1999) 25(1):143-149.
  • ZARNITSYN VG, PRAUSNITZ MR: Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med. Biol. (2004) 30(4):527-538.
  • LIANG HD, LU QL, XUE SA et al.: Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med. Biol. (2004) 30(11):1523-1529.
  • WALTON AJ, REYNOLDS GT: Sonoluminescence. Advances Physics (1984) 33(6):595-660.
  • NEGISHI K: Experimental studies on sonoluminescence and ultrasonic cavitation. J. Phys. Soc. Jpn (1961) 16(7):1450-1465.
  • KUTTRUFF H: Relation between sonoluminescence and cavitation-oscillations in liquids. Acustica (1962) 12:230-254.
  • VAUGHAN PW, LEEMAN S: Some comments on mechanisms of sonoluminescence. Acustica (1986) 59:279-281.
  • MARGULIS MA, GRUNDEL LM: The ultrasonic luminescence of a liquid near the cavitation threshold. 1. The development of the pre-threshold luminescence of a liquid in a ultrasonic field. Russ. J. Phys. Chem. (1981) 55:386-389.
  • IERNETTI G: Pulsed ultrasonic cavitation. Part I. Cavitation noise, luminescence thresholds, nuclei distribution. Acustica (1970) 1973(29):127-137.
  • SUNDARAM J, MELLEIN BR, MITRAGOTRI S: An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys. J. (2003) 84(5):3087-3101.
  • KAMAEV PP, HUTCHESON JD, WILSON ML, PRAUSNITZ MR: Quantification of optison bubble size and lifetime during sonication dominant role of secondary cavitation bubbles causing acoustic bioeffects. J. Acoust. Soc. Am. (2004) 115(4):1818-1825.
  • CHEN WS, BRAYMAN AA, MATULA TJ, CRUM LA, MILLER MW: The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med. Biol. (2003) 29(5):739-748.
  • TANG H, WANG CC, BLANKSCHTEIN D, LANGER R: An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm. Res. (2002) 19(8):1160-1169.
  • TEZEL A, SENS A, TUCHSCHERER J, MITRAGOTRI S: Frequency dependence of sonophoresis. Pharm. Res. (2001) 18(12):1694-1700.
  • TEZEL A, SENS A, MITRAGOTRI S: Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J. Pharm. Sci. (2002) 91(2):444-453.
  • ZDERIC V, CLARK JI, VAEZY S: Drug delivery into the eye with the use of ultrasound. J. Ultrasound Med. (2004) 23(10):1349-1359.
  • LIU J, LEWIS TN, PRAUSNITZ MR: Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res. (1998) 15(6):918-924.
  • KHANNA S, AMSO NN, PAYNTER SJ, COAKLEY WT: Contrast agent bubble and erythrocyte behavior in a 1.5-MHz standing ultrasound wave. Ultrasound Med. Biol. (2003) 29(10):1463-1470.
  • MORTON KI, TER HAAR GR, STRATFORD IJ, HILL CR: Subharmonic emission as an indicator of ultrasonically-induced biological damage. Ultrasound Med. Biol. (1983) 9(6):629-633.
  • MORTON KI, TER HAAR GR, STRATFORD IJ, HILL CR: The role of cavitation in the interaction of ultrasound with V79 Chinese hamster cells in vitro. Br. J. Cancer Suppl. (1982) 45(5):147-150.
  • MILLER DL, GIES RA: Enhancement of ultrasonically-induced hemolysis by perfluorocarbon-based compared to air-based echo-contrast agents. Ultrasound Med. Biol. (1998) 24(2):285-292.
  • MCDANNOLD N, VYKHODTSEVA N, HYNYNEN K: Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Phys. Med. Biol. (2006) 51(4):793-807.
  • COCHRAN SA, PRAUSNITZ MR: Sonoluminescence as an indicator of cell membrane disruption by acoustic cavitation. Ultrasound Med. Biol. (2001) 27(6):841-850.
  • HUBER PE, DEBUS J: Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose. Radiat. Res. (2001) 156(3):301-309.
  • TEZEL A, MITRAGOTRI S: Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys. J. (2003) 85(6):3502-3512.
  • MITRAGOTRI S, RAY D, FARRELL J et al.: Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. J. Pharm. Sci. (2000) 89(7):892-900.
  • MITRAGOTRI S: Breaking the skin barrier. Adv. Drug Deliv. Rev. (2004) 56(5):555-556.
  • INOUE N, KOBAYASHI D, KIMURA M et al.: Fundamental investigation of a novel drug delivery system, a transdermal delivery system with jet injection. Int. J. Pharm. (1996) 137:75-84.
  • MCALLISTER DV, WANG PM, DAVIS SP et al.: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA (2003) 100(24):13755-13760.
  • MEYER BR, KREIS W, ESCHBACH J et al.: Successful transdermal administration of therapeutic doses of a polypeptide to normal human volunteers. Clin. Pharmacol. Ther. (1988) 44(6):607-612.
  • PRAUSNITZ MR, LAU BS, MILANO CD et al.: A quantitative study of electroporation showing a plateau in net molecular transport. Biophys. J. (1993) 65(1):414-422.
  • WILLIAMS AC, BARRY BW: Penetration enhancers. Adv. Drug Deliv. Rev. (2004) 56(5):603-618.
  • FELLINGER K, SCHMIDT J: [Clinic and therapies of the chronic] Gelenkreumatismus (ask for translation). In: Maudrich, Vienna, Austria (1954):549-552.
  • MITRAGOTRI S, BLANKSCHTEIN D, LANGER R: Ultrasound-mediated transdermal protein delivery. Science (1995) 269(5225):850-853.
  • MITRAGOTRI S, BLANKSCHTEIN D, LANGER R: Transdermal drug delivery using low-frequency sonophoresis. Pharm. Res. (1996) 13(3):411-420.
  • TACHIBANA K: Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure. Pharm. Res. (1992) 9(7):952-954.
  • TEZEL A, PALIWAL S, SHEN Z, MITRAGOTRI S: Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine (2005) 23(29):3800-3807.
  • MITRAGOTRI S, COLEMAN M, KOST J, LANGER R: Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels. J. Appl. Physiol. (2000) 89(3):961-966.
  • PALIWAL S, MENON GK, MITRAGOTRI S: Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J. Invest. Dermatol. (2006) 126(5):1095-1101.
  • KOST J, MITRAGOTRI S, GABBAY RA, PISHKO M, LANGER R: Transdermal monitoring of glucose and other analytes using ultrasound. Nat. Med. (2000) 6(3):347-350.
  • MITRAGOTRI S, COLEMAN M, KOST J, LANGER R: Transdermal extraction of analytes using low-frequency ultrasound. Pharm. Res. (2000) 17(4):466-470.
  • CANTRELL JT, MCARTHUR MJ, PISHKO MV: Transdermal extraction of interstitial fluid by low-frequency ultrasound quantified with 3H2O as a tracer molecule. J. Pharm. Sci. (2000) 89(9):1170-1179.
  • TEZEL A, DOKKA S, KELLY S, HARDEE GE, MITRAGOTRI S: Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm. Res. (2004) 21(12):2219-2225.
  • JOHNSON ME, MITRAGOTRI S, PATEL A, BLANKSCHTEIN D, LANGER R: Synergistic effects of chemical enhancers and therapeutic ultrasound on transdermal drug delivery. J. Pharm. Sci. (1996) 85(7):670-679.
  • LE L, KOST J, MITRAGOTRI S: Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm. Res. (2000) 17(9):1151-1154.
  • KOST J, PLIQUETT U, MITRAGOTRI S et al.: Synergistic effect of electric field and ultrasound on transdermal transport. Pharm. Res. (1996) 13(4):633-638.
  • THOMAS CE, EHRHARDT A, KAY MA: Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. (2003) 4(5):346-358.
  • LI S, HUANG L: Nonviral gene therapy: promises and challenges. Gene Ther. (2000) 7(1):31-34.
  • GUZMAN HR, NGUYEN DX, MCNAMARA AJ, PRAUSNITZ MR: Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy. J. Pharm. Sci. (2002) 91(7):1693-1701.
  • GUZMAN HR, NGUYEN DX, KHAN S, PRAUSNITZ MR: Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. J. Acoust. Soc. Am. (2001) 110(1):597-606.
  • GUZMAN HR, NGUYEN DX, KHAN S, PRAUSNITZ MR: Ultrasound-mediated disruption of cell membranes. I. Quantification of molecular uptake and cell viability. J. Acoust. Soc. Am. (2001) 110(1):588-596.
  • MILLER MW, MILLER DL, BRAYMAN AA: A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. (1996) 22(9):1131-1154.
  • FECHHEIMER M, BOYLAN JF, PARKER S et al.: Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl. Acad. Sci. USA (1987) 84(23):8463-8467.
  • KIM HJ, GREENLEAF JF, KINNICK RR, BRONK JT, BOLANDER ME: Ultrasound-mediated transfection of mammalian cells. Hum. Gene Ther. (1996) 7(11):1339-1346.
  • LAWRIE A, BRISKEN AF, FRANCIS SE et al.: Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation (1999) 99(20):2617-2620.
  • HUBER PE, JENNE J, DEBUS J, WANNENMACHER MF, PFISTERER P: A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells. Ultrasound Med. Biol. (1999) 25(9):1451-1457.
  • TATA DB, DUNN F, TINDALL DJ: Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem. Biophys. Res. Commun. (1997) 234(1):64-67.
  • BAO S, THRALL BD, MILLER DL: Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. (1997) 23(6):953-959.
  • MEHIER-HUMBERT S, BETTINGER T, YAN F, GUY RH: Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J. Control. Release (2005) 104(1):203-211.
  • MILLER DL, BAO S, GIES RA, THRALL BD: Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med. Biol. (1999) 25(9):1425-1430.
  • HUBER PE, PFISTERER P: In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther. (2000) 7(17):1516-1525.
  • MANOME Y, NAKAMURA M, OHNO T, FURUHATA H: Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum. Gene Ther. (2000) 11(11):1521-1528.
  • LAUER U, BURGELT E, SQUIRE Z et al.: Shock wave permeabilization as a new gene transfer method. Gene Ther. (1997) 4(7):710-715.
  • HOSSEINKHANI H, AOYAMA T, OGAWA O, TABATA Y: Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Curr. Pharm. Biotechnol. (2003) 4(2):109-122.
  • UNGER EC, MCCREERY TP, SWEITZER RH: Ultrasound enhances gene expression of liposomal transfection. Invest. Radiol. (1997) 32(12):723-727.
  • LAWRIE A, BRISKEN AF, FRANCIS SE et al.: Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. (2000) 7(23):2023-2027.
  • WASAN EK, REIMER DL, BALLY MB: Plasmid DNA is protected against ultrasonic cavitation-induced damage when complexed to cationic liposomes. J. Pharm. Sci. (1996) 85(4):427-433.
  • DUVSHANI-ESHET M, BARUCH L, KESSELMAN E, SHIMONI E, MACHLUF M: Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Ther. (2006) 13(2):163-172.
  • BAO S, THRALL BD, GIES RA, MILLER DL: In vivo transfection of melanoma cells by lithotripter shock waves. Cancer Res. (1998) 58(2):219-221.
  • TANIYAMA Y, TACHIBANA K, HIRAOKA K et al.: Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. (2002) 9(6):372-380.
  • TANIYAMA Y, TACHIBANA K, HIRAOKA K et al.: Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation (2002) 105(10):1233-1239.
  • HASHIYA N, AOKI M, TACHIBANA K et al.: Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem. Biophys. Res. Commun. (2004) 317(2):508-514.
  • BEERI R, GUERRERO JL, SUPPLE G et al.: New efficient catheter-based system for myocardial gene delivery. Circulation (2002) 106(14):1756-1759.
  • AMABILE PG, WAUGH JM, LEWIS TN et al.: High-efficiency endovascular gene delivery via therapeutic ultrasound. J. Am. Coll. Cardiol. (2001) 37(7):1975-1980.
  • PILLAI R, PETRAK K, BLEZINGER P et al.: Ultrasonic nebulization of cationic lipid-based gene delivery systems for airway administration. Pharm. Res. (1998) 15(11):1743-1747.
  • GUILLAUME C, DELEPINE P, DROAL C et al.: Aerosolization of cationic lipid-DNA complexes: lipoplex characterization and optimization of aerosol delivery conditions. Biochem. Biophys. Res. Commun. (2001) 286(3):464-471.
  • LU QL, LIANG HD, PARTRIDGE T, BLOMLEY MJ: Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther. (2003) 10(5):396-405.
  • LEMIEUX P, GUERIN N, PARADIS G et al.: A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. (2000) 7(11):986-991.
  • VYKHODTSEVA NI, GAVRILOV LR, MERING TA, IAMSHCHIKOVA NG: [Use of focused ultrasound for local destruction of different brain structures]. Zh Nevropatol Psikhiatr Im S S Korsakova (1976) 76(12):1810-1816.
  • HYNYNEN K, MCDANNOLD N, VYKHODTSEVA N, JOLESZ FA: Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology (2001) 220(3):640-646.
  • MESIWALA AH, FARRELL L, WENZEL HJ et al.: High-intensity focused ultrasound selectively disrupts the blood–brain barrier in vivo. Ultrasound Med. Biol. (2002) 28(3):389-400.
  • MCDANNOLD N, VYKHODTSEVA N, RAYMOND S, JOLESZ FA, HYNYNEN K: MRI-guided targeted blood–brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med. Biol. (2005) 31(11):1527-1537.
  • STECKEL H, ESKANDAR F, WITTHOHN K: Effect of cryoprotectants on the stability and aerosol performance of nebulized aviscumine, a 57-kDa protein. Eur. J. Pharm. Biopharm. (2003) 56(1):11-21.
  • LANGENBACK EG, DAVIS JM, ROBBINS C et al.: Improved pulmonary distribution of recombinant human Cu/Zn superoxide dismutase, using a modified ultrasonic nebulizer. Pediatr. Pulmonol. (1999) 27(2):124-129.
  • NIVEN RW, WHITCOMB KL, SHANER L, IP AY, KINSTLER OB: The pulmonary absorption of aerosolized and intratracheally instilled rhG-CSF and monoPEGylated rhG-CSF. Pharm. Res. (1995) 12(9):1343-1349.
  • ZDERIC V, VAEZY S, MARTIN RW, CLARK JI: Ocular drug delivery using 20-kHz ultrasound. Ultrasound Med. Biol. (2002) 28(6):823-829.
  • ZDERIC V, CLARK JI, MARTIN RW, VAEZY S: Ultrasound-enhanced transcorneal drug delivery. Cornea (2004) 23(8):804-811.
  • BEKEREDJIAN R, CHEN S, GRAYBURN PA, SHOHET RV: Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med. Biol. (2005) 31(5):687-691.
  • SKYBA DM, PRICE RJ, LINKA AZ, SKALAK TC, KAUL S: Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation (1998) 98(4):290-293.
  • PRICE RJ, SKYBA DM, KAUL S, SKALAK TC: Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation (1998) 98(13):1264-1267.
  • GRAMIAK R, SHAH PM: Echocardiography of the aortic root. Invest. Radiol. (1968) 3(5):356-366.
  • CHEN S, WANG Z, ZHOU YT, GRAYBURN PA: Optimization of the size distribution and myocardial contrast effect of perfluorocarbon-filled albumin microbubbles by lyophilization under continuous negative pressure. J. Am. Soc. Echocardiogr. (2000) 13(8):748-753.
  • UNGER EC, MCCREERY TP, SWEITZER RH, CALDWELL VE, WU Y: Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest. Radiol. (1998) 33(12):886-892.
  • MUKHERJEE D, WONG J, GRIFFIN B et al.: Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J. Am. Coll. Cardiol. (2000) 35(6):1678-1686.
  • PORTER TR, IVERSEN PL, LI S, XIE F: Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J. Ultrasound Med. (1996) 15(8):577-584.
  • LINDNER JR, SONG J, CHRISTIANSEN J et al.: Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation (2001) 104(17):2107-2112.
  • WELLER GE, LU E, CSIKARI MM et al.: Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation (2003) 108(2):218-224.
  • KORPANTY G, GRAYBURN PA, SHOHET RV, BREKKEN RA: Targeting vascular endothelium with avidin microbubbles. Ultrasound Med. Biol. (2005) 31(9):1279-1283.
  • KLIBANOV AL: Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv. Drug Deliv. Rev. (1999) 37(1-3):139-157.
  • MOLEMA G, DE LEIJ LF, MEIJER DK: Tumor vascular endothelium: barrier or target in tumor directed drug delivery and immunotherapy. Pharm. Res. (1997) 14(1):2-10.
  • CYBULSKY MI, GIMBRONE MA Jr: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science (1991) 251(4995):788-791.
  • VILLANUEVA FS, JANKOWSKI RJ, KLIBANOV S et al.: Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation (1998) 98(1):1-5.
  • DEMOS SM, ALKAN-ONYUKSEL H, KANE BJ et al.: In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol. (1999) 33(3):867-875.
  • LINDNER JR, ISMAIL S, SPOTNITZ WD et al.: Albumin microbubble persistence during myocardial contrast echocardiography is associated with microvascular endothelial glycocalyx damage. Circulation (1998) 98(20):2187-2194.
  • LINDNER JR, COGGINS MP, KAUL S et al.: Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation (2000) 101(6):668-675.
  • PORTER TR, HISER WL, KRICSFELD D et al.: Inhibition of carotid artery neointimal formation with intravenous microbubbles. Ultrasound Med. Biol. (2001) 27(2):259-265.
  • PORTER TR, KNNAP D, VENNERI L et al.: Increased suppression of intracoronary c-myc protein synthesis within the stent or balloon injury site using an intravenous microbubble delivery system containing antisense to c-myc: comparison with direct intracoronary injection. J. Am. Coll. Cardiol. (2003) 41:431A.
  • KUTRYK MJB, STEWART DJ: Angiogenesis of the heart. Microsc. Res. Tech. (2003) 60(2):138-158.
  • MALEKAN R, REYNOLDS C, NARULA N et al.: Angiogenesis in transmyocardial laser revascularization – a nonspecific response to injury. Circulation (1998) 98(19):Ii62-Ii65.
  • SONG J, QI M, KAUL S, PRICE RJ: Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound. Circulation (2002) 106(12):1550-1555.
  • SONG J, COTTLER PS, KLIBANOV AL, KAUL S, PRICE RJ: Microvascular remodeling and accelerated hyperemia blood flow restoration in arterially occluded skeletal muscle exposed to ultrasonic microbubble destruction. Am. J. Physiol. Heart Circ. Physiol. (2004) 287(6):H2754-H2761.
  • YOSHIDA J, OHMORI K, TAKEUCHI H et al.: Treatment of ischemic limbs based on local recruitment of vascular endothelial growth factor-producing inflammatory cells with ultrasonic microbubble destruction. J. Am. Coll. Cardiol. (2005) 46(5):899-905.
  • ENOMOTO S, YOSHIYAMA M, OMURA T et al.: Microbubble destruction with ultrasound augments neovascularisation by bone marrow cell transplantation in rat hind limb ischaemia. Heart (2006) 92(4):515-520.
  • IMADA T, TATSUMI T, MORI Y et al.: Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response. Arterioscler. Thromb. Vasc. Biol. (2005) 25(10):2128-2134.
  • EVERY NR, PARSONS LS, HLATKY M, MARTIN JS, WEAVER WD: A comparison of thrombolytic therapy with primary coronary angioplasty for acute myocardial infarction. Myocardial Infarction Triage and Intervention Investigators. N. Engl. J. Med. (1996) 335(17):1253-1260.
  • SAKHAROV DV, HEKKENBERG RT, RIJKEN DC: Acceleration of fibrinolysis by high-frequency ultrasound: the contribution of acoustic streaming and temperature rise. Thromb. Res. (2000) 100(4):333-340.
  • EVERBACH EC, FRANCIS CW: Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med. Biol. (2000) 26(7):1153-1160.
  • HARPAZ D: Ultrasound enhancement of thrombolytic therapy: observations and mechanisms. Int. J. Cardiovasc. Intervent. (2000) 3(2):81-89.
  • FRANCIS CW, BLINC A, LEE S, COX C: Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med. Biol. (1995) 21(3):419-424.
  • FRANCIS CW, ONUNDARSON PT, CARSTENSEN EL et al.: Enhancement of fibrinolysis in vitro by ultrasound. J. Clin. Invest. (1992) 90(5):2063-2068.
  • LAUER CG, BURGE R, TANG DB et al.: Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation (1992) 86(4):1257-1264.
  • TACHIBANA K, TACHIBANA S: Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation (1995) 92(5):1148-1150.
  • PORTER TR, LEVEEN RF, FOX R, KRICSFELD A, XIE F: Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am. Heart J. (1996) 132(5):964-968.
  • WU Y, UNGER EC, MCCREERY TP et al.: Binding and lysing of blood clots using MRX-408. Invest. Radiol. (1998) 33(12):880-885.
  • CULP WC, PORTER TR, LOWERY J et al.: Intracranial clot lysis with intravenous platelet targeted microbubbles and transcranial ultrasound. Circulation (2003) 108(17):604-604.
  • CULP WC, PORTER TR, LOWERY J et al.: Intracranial clot lysis with intravenous microbubbles and transcranial ultrasound in swine. Stroke (2004) 35(10):2407-2411.
  • LANZA GM, WALLACE KD, SCOTT MJ et al.: A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation (1996) 94(12):3334-3340.
  • SHOHET RV, CHEN S, ZHOU YT et al.: Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation (2000) 101(22):2554-2556.
  • FRENKEL PA, CHEN S, THAI T, SHOHET RV, GRAYBURN PA: DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med. Biol. (2002) 28(6):817-822.
  • BEKEREDJIAN R, CHEN S, FRENKEL PA, GRAYBURN PA, SHOHET RV: Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation (2003) 108(8):1022-1026.
  • CHRISTIANSEN JP, FRENCH BA, KLIBANOV AL, KAUL S, LINDNER JR: Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med. Biol. (2003) 29(12):1759-1767.
  • VANNAN M, MCCREERY T, LI P et al.: Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J. Am. Soc. Echocardiogr. (2002) 15(3):214-218.
  • KORPANTY G, CHEN S, SHOHET RV et al.: Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Ther. (2005) 12(17):1305-1312.
  • DU X, YANG Y, LE VISAGE C et al.: In vivo US monitoring of catheter-based vascular delivery of gene microspheres in pigs: feasibility. Radiology (2003) 228(2):555-559.
  • SZALAY A: Intensity determinations to explain the depolymerizing action of ultrasonic waves. Z. Phys. Chem. (1934) A164:234-296.
  • KOST J, LEONG K, LANGER R: Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc. Natl. Acad. Sci. USA (1989) 86(20):7663-7666.
  • AGRAWAL CM, KENNEDY ME, MICALLEF DM: The effects of ultrasound irradiation on a biodegradable 50-50% copolymer of polylactic and polyglycolic acids. J. Biomed. Mater. Res. (1994) 28(8):851-859.
  • KWOK CS, MOURAD PD, CRUM LA, RATNER BD: Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J. Biomed. Mater. Res. (2001) 57(2):151-164.
  • KODAMA T, DOUKAS AG, HAMBLIN MR: Delivery of ribosome-inactivating protein toxin into cancer cells with shock waves. Cancer Lett. (2003) 189(1):69-75.
  • ZHOU Z, MUKHERJEE D, WANG K et al.: Induction of angiogenesis in a canine model of chronic myocardial ischemia with intravenous infusion of vascular endothelial growth factor (VEGF) combined with ultrasound energy and echo contrast agent. J. Am.Coll.Cardiol. (2002) 39(Suppl. 2):396.
  • TACHIBANA K, UCHIDA T, OGAWA K, YAMASHITA N, TAMURA K: Induction of cell-membrane porosity by ultrasound. Lancet (1999) 353(9162):1409.
  • GRIFFIN JE, TOUCHSTONE JC: Low-intensity phonophoresis of cortisol in swine. Phys. Ther. (1968) 48(12):1336-1344.
  • LOVEROCK P, TER HAAR G, ORMEROD MG, IMRIE PR: The effect of ultrasound on the cytotoxicity of adriamycin. Br. J. Radiol. (1990) 63(751):542-546.
  • VAN WAMEL A, BOUAKAZ A, BERNARD B, TEN CATE F, DE JONG N: Radionuclide tumour therapy with ultrasound contrast microbubbles. Ultrasonics (2004) 42(1-9):903-906.
  • TACHIBANA K, UCHIDA T, TAMURA K et al.: Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells. Cancer Lett. (2000) 149(1-2):189-194.
  • YU T, HU K, BAI J, WANG Z: Reversal of adriamycin resistance in ovarian carcinoma cell line by combination of verapamil and low-level ultrasound. Ultrason. Sonochem. (2003) 10(1):37-40.
  • YU T, WANG Z, MASON TJ: A review of research into the uses of low level ultrasound in cancer therapy. Ultrason. Sonochem. (2004) 11(2):95-103.
  • YU T, HUANG X, HU K, BAI J, WANG Z: Treatment of transplanted adriamycin-resistant ovarian cancers in mice by combination of adriamycin and ultrasound exposure. Ultrason. Sonochem. (2004) 11(5):287-291.
  • QIAN Z, STOODLEY P, PITT WG: Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials (1996) 17(20):1975-1980.
  • QIAN Z, SAGERS RD, PITT WG: Investigation of the mechanism of the bioacoustic effect. J. Biomed. Mater. Res. (1999) 44(2):198-205.
  • CARMEN JC, NELSON JL, BECKSTEAD BL et al.: Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J. Infect. Chemother. (2004) 10(4):193-199.
  • REDISKE AM, ROEDER BL, NELSON JL et al.: Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob. Agents Chemother. (2000) 44(3):771-772.
  • REDISKE AM, ROEDER BL, BROWN MK et al.: Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob. Agents Chemother. (1999) 43(5):1211-1214.
  • ALEXANDRIDIS P, ATHANASSIOU V, HATTON TA: Pluronic-P105 Peo-Ppo-Peo block-copolymer in aqueous urea solutions – micelle formation, structure, and microenvironment. Langmuir (1995) 11(7):2442-2450.
  • MUNSHI N, RAPOPORT N, PITT WG: Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett. (1997) 118(1):13-19.
  • HUSSEINI GA, RUNYAN CM, PITT WG: Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. Bmc Cancer (2002) 2:20.
  • NELSON JL, ROEDER BL, CARMEN JC, ROLOFF F, PITT WG: Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res. (2002) 62(24):7280-7283.
  • RAPOPORT NY, HERRON JN, PITT WG, PITINA L: Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J. Control. Release (1999) 58(2):153-162.
  • RAPOPORT NY, CHRISTENSEN DA, FAIN HD, BARROWS L, GAO Z: Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics (2004) 42(1-9):943-950.
  • HUSSEINI GA, CHRISTENSEN DA, RAPOPORT NY, PITT WG: Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J. Control. Rel. (2002) 83(2):303-305.
  • HUANG SL, MACDONALD RC: Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim. Biophys. Acta (2004) 1665(1-2):134-141.
  • BEDNARSKI MD, LEE JW, CALLSTROM MR, LI KCP: In vivo target-specific delivery of macromolecular agents with MR-guided focused ultrasound. Radiology (1997) 204(1):263-268.
  • PALIWAL S, SUNDARAM J, MITRAGOTRI S: Induction of cancer-specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound. Br. J. Cancer (2005) 92(3):499-502.
  • ROSENTHAL I, SOSTARIC JZ, RIESZ P: Sonodynamic therapy – a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. (2004) 11(6):349-363.
  • MISIK V, RIESZ P: Free radical intermediates in sonodynamic therapy. Ann. NY Acad. Sci. (2000) 899:335-348.
  • MISIK V, RIESZ P: EPR study of free radicals induced by ultrasound in organic liquids II. Probing the temperatures of cavitation regions. Ultrason. Sonochem. (1996) 3(1):25-37.
  • ABE H, KUROKI M, TACHIBANA K et al.: Targeted sonodynamic therapy of cancer using a photosensitizer conjugated with antibody against carcinoembryonic antigen. Anti-Cancer Res. (2002) 22(3):1575-1580.
  • YUMITA N, UMEMURA S: Sonodynamic therapy with photofrin II on AH130 solid tumor. Pharmacokinetics, tissue distribution and sonodynamic antitumoral efficacy of photofrin II. Cancer Chemother. Pharmacol. (2003) 51(2):174-178.
  • YUMITA N, UMEMURA S, NISHIGAKI R: Ultrasonically induced cell damage enhanced by photofrin II: mechanism of sonodynamic activation. In Vivo (2000) 14(3):425-429.
  • YUMITA N, OKUYAMA N, SASAKI K, UMEMURA S: Sonodynamic therapy on chemically induced mammary tumor: pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of porfimer sodium. Cancer Sci. (2004) 95(9):765-769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.