227
Views
22
CrossRef citations to date
0
Altmetric
Review

Progress in absorption enhancers based on tight junction

&
Pages 275-286 | Published online: 09 May 2007

Bibliography

  • MIZUNO N, NIWA T, YOTSUMOTO Y, SUGIYAMA Y: Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. (2003) 55(3):425-461.
  • CHEESEMAN C: Role of intestinal basolateral membrane in absorption of nutrients. Am. J. Physiol. (1992) 263(3 Pt 2):R482-R488.
  • POWELL DW: Barrier function of epithelia. Am. J. Physiol. (1981) 241(4):G275-G288.
  • ALSENZ J, RUSSELL-JONES GJ, WESTWOOD S, LEVET-TRAFIT B, DE SMIDT PC: Oral absorption of peptides through the cobalamin (vitamin B12) pathway in the rat intestine. Pharm. Res. (2000) 17(7):825-832.
  • RUSSELL-JONES GJ, WESTWOOD SW, HABBERFIELD AD: Vitamin B12 mediated oral delivery systems for granulocyte-colony stimulating factor and erythropoietin. Bioconjug. Chem. (1995) 6(4):459-465.
  • RUSSELL-JONES GJ, WESTWOOD SW, FARNWORTH PG, FINDLAY JK, BURGER HG: Synthesis of LHRH antagonists suitable for oral administration via the vitamin B12 uptake system. Bioconjug. Chem. (1995) 6(1):34-42.
  • NARUHASHI K, SAI Y, TAMAI I, SUZUKI N, TSUJI A: PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine. Pharm. Res. (2002) 19(10):1417-1423.
  • HORI R, TOMITA Y, KATSURA T et al.: Transport of bestatin in rat renal brush-border membrane vesicles. Biochem. Pharmacol. (1993) 45(9):1763-1768.
  • SAITO H, INUI K: Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am. J. Physiol. (1993) 265(2 Pt 1):G289-G294.
  • SWAAN PW, STEHOUWER MC, TUKKER JJ: Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat, and lisinopril. Biochim. Biophys. Acta (1995) 1236(1):31-38.
  • TERADA T, SAITO H, MUKAI M, INUI K: Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am. J. Physiol. (1997) 273(5 Pt 2):F706-F711.
  • INUI K, TERADA T, MASUDA S, SAITO H: Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2. Nephrol. Dial. Transplant (2000) 15 (Suppl. 6):11-13.
  • RAMAMOORTHY S, LIU W, MA YY et al.: Proton/peptide cotransporter (PEPT 2) from human kidney: functional characterization and chromosomal localization. Biochim. Biophys. Acta (1995) 1240(1):1-4.
  • TERADA T, INUI K: Gene expression and regulation of drug transporters in the intestine and kidney. Biochem. Pharmacol. (2007) 73:440-449.
  • TSUJI A, TAMAI I: Carrier-mediated intestinal transport of drugs. Pharm. Res. (1996) 13(7):963-977.
  • OH DM, HAN HK, AMIDON GL: Drug transport and targeting. Intestinal transport. Pharm. Biotechnol. (1999) 12:59-88.
  • TAMAI I, NEZU J, UCHINO H et al.: Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. (2000) 273(1):251-260.
  • WALTERS HC, CRADDOCK AL, FUSEGAWA H, WILLINGHAM MC, DAWSON PA: Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am. J. Physiol. Gastrointest. Liver Physiol. (2000) 279(6):G1188-G1200.
  • KULLAK-UBLICK GA, ISMAIR MG, STIEGER B et al.: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology (2001) 120(2):525-533.
  • LEE VH, SPORTY JL, FANDY TE: Pharmacogenomics of drug transporters: the next drug delivery challenge. Adv. Drug Deliv. Rev. (2001) 50 (Suppl. 1):S33-S40.
  • GOTOH Y, SUZUKI H, KINOSHITA S et al.: Involvement of an organic anion transporter (canalicular multispecific organic anion transporter/multidrug resistance-associated protein 2) in gastrointestinal secretion of glutathione conjugates in rats. J. Pharmacol. Exp. Ther. (2000) 292(1):433-439.
  • HIROHASHI T, SUZUKI H, CHU XY et al.: Function and expression of multidrug resistance-associated protein family in human colon adenocarcinoma cells (Caco-2). J. Pharmacol. Exp. Ther. (2000) 292(1):265-270.
  • JONKER JW, SMIT JW, BRINKHUIS RF et al.: Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl. Cancer Inst. (2000) 92(20):1651-1656.
  • TAIPALENSUU J, TORNBLOM H, LINDBERG G et al.: Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. (2001) 299(1):164-170.
  • SIKIC BI, ADVANI R, FISHER GA et al.: Enhanced bioavailability of oral paclitaxel by valspodar (PSC833), an inhibitor of small bowel P-glycoprotein and cytochrome P450. Clin. Cancer Res. (2000) 6:4580S.
  • HOCHMAN J, ARTURSSON P: Mechanisms of absorption enhancement and tight junction regulation. J. Control Release (1994) 29:253-267.
  • CITI S: Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J. Cell Biol. (1992) 117(1):169-178.
  • FARQUHAR MG, PALADE GE: Junctional complexes in various epithelia. J. Cell Biol. (1963) 17:375-412.
  • SCHENEEBERGER EE, LYNCH RD: Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. (1992) 262:L647-L661.
  • GUMBINER B: Breaking through the tight junction barrier. J. Cell Biol. (1993) 123:1631-1633.
  • KACHAR B, REESE TS: Evidence for the lipidic nature of tight junction strands. Nature (1982) 296(5856):464-466.
  • FURUSE M, HIRASE T, ITOH M et al.: Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. (1993) 123(6 Pt 2):1777-1788.
  • HIRASE T, STADDON JM, SAITOU M et al.: Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. (1997) 110(Pt 14):1603-1613.
  • MOROI S, SAITOU M, FUJIMOTO K et al.: Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am. J. Physiol. (1998) 274(6 Pt 1):C1708-C1717.
  • SAITOU M, FUJIMOTO K, DOI Y et al.: Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. (1998) 141(2):397-408.
  • FURUSE M, FUJITA K, HIIRAGI T, FUJIMOTO K, TSUKITA S: Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. (1998) 141(7):1539-1550.
  • MORITA K, FURUSE M, FUJIMOTO K, TSUKITA S: Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA (1999) 96(2):511-516.
  • MORITA K, SASAKI H, FUJIMOTO K, FURUSE M, TSUKITA S: Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J. Cell Biol. (1999) 145(3):579-588.
  • MORITA K, SASAKI H, FURUSE M, TSUKITA S: Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. (1999) 147(1):185-194.
  • FURUSE M, SASAKI H, FUJIMOTO K, TSUKITA S: A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. (1998) 143(2):391-401.
  • TSUKITA S, FURUSE M, ITOH M: Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell. Biol. (2001) 2(4):285-293.
  • FURUSE M, TSUKITA S: Claudins in occluding junctions of humans and flies. Trends Cell Biol. (2006) 16(4):181-188.
  • TSUKITA S, FURUSE M: Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. (2000) 149(1):13-16.
  • KUCHI-SAISHIN Y, GOTOH S, FURUSE M et al.: Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. (2002) 13:875-886.
  • LI WY, HUEY CL, YU ASL: Expression of claudin-7 and -8 along the mouse nephron. Am. J. Physiol. (2004) 286:F1063-F1071.
  • TSUKITA S, FURUSE M: Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. (1999) 9(7):268-273.
  • FURUSE M, HATA M, FURUSE K et al.: Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. (2002) 156(6):1099-1111.
  • NITTA T, HATA M, GOTOH S et al.: Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. (2003) 161(3):653-660.
  • GOW A, SOUTHWOOD CM, LI JS et al.: CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell (1999) 99(6):649-659.
  • FURUSE M, SASAKI H, TSUKITA S: Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. (1999) 147(4):891-903.
  • FURUSE M, FURUSE K, SASAKI H, TSUKITA S: Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol. (2001) 153(2):263-272.
  • VAN ITALLIE CM, FANNING AS, ANDERSON JM: Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am. J. Physiol. Renal Physiol. (2003) 285(6):F1078-F1084.
  • ANDERSON J: Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. (2001) 16:126-130.
  • STAEHELIN LA: Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. (1973) 13:763-786.
  • IKENOUCHI J, FURUSE M, FURUSE K et al.: Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell Biol. (2005) 171(6):939-945.
  • UMEDA K, IKENOUCHI J, KATAHIRA-TAYAMA S et al.: ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell (2006) 126(4):741-754.
  • SCHNEEBERGER EE, LYNCH RD: The tight junction: a multifunctional complex. Am. J. Physiol. (2004) 286:C1213-C1228.
  • ENGEL RH, RIGGI SJ: Effect of sulfated and sulfonated surfactants on the intestinal absorption of heparin. Proc. Soc. Exp. Biol. Med. (1969) 130(3):879-884.
  • TIDBALL CS, LIPMAN RI: Enhancement of jejunal absorption of heparinoid by sodium ethylenediaminetetraacetate in the dog. Proc. Soc. Exp. Biol. Med. (1962) 111:713-715.
  • AUNGST BJ: Intestinal permeation enhancers. J. Pharm. Sci. (2000) 89(4):429-442.
  • TOMITA M, HAYASHI M, AWAZU S: Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J. Pharm. Sci. (1996) 85(6):608-611.
  • TOMITA M, HAYASHI M, AWAZU S: Absorption-enhancing mechanism of sodium caprate and decanoylcarnitine in Caco-2 cells. J. Pharmacol. Exp. Ther. (1995) 272(2):739-743.
  • YAMAMOTO A, TATSUMI H, MARUYAMA M et al.: Modulation of intestinal permeability by nitric oxide donors: implications in intestinal delivery of poorly absorbable drugs. J. Pharmacol. Exp. Ther. (2001) 296(1):84-90.
  • SAKAI M, IMAI T, OHTAKE H, AZUMA H, OTAGIRI M: Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: assessment by confocal laser scanning microscopy. J. Pharm. Sci. (1997) 86(7):779-785.
  • SAKAI M, IMAI T, OHTAKE H, OTAGIRI M: Cytotoxicity of absorption enhancers in Caco-2 cell monolayers. J. Pharm. Pharmacol. (1998) 50(10):1101-1108.
  • JORGENSEN L, ARTURSSON P, BECHGAARD E: Toxicological and absorption enhancing effects of glycofurol 75 and sodium glycocholate in monolayers of human intestinal epithelial (Caco-2) cells. Int. J. Pharm. (1993) 95:209-217.
  • HURNI MA, NOACH AB, BLOM-ROOSEMALEN MC et al.: Permeability enhancement in Caco-2 cell monolayers by sodium salicylate and sodium taurodihydrofusidate: assessment of effect-reversibility and imaging of transepithelial transport routes by confocal laser scanning microscopy. J. Pharmacol. Exp. Ther. (1993) 267(2):942-950.
  • LECLUYSE EL, SUTTON SC, FIX JA: In vitro effects of long-chain acylcarnitines on the permeability, transepithelial electrical resistance and morphology of rat colonic mucosa. J. Pharmacol. Exp. Ther. (1993) 265(2):955-962.
  • DUIZER E, VAN DER WULP C, VERSANTVOORT CH, GROTEN JP: Absorption enhancement, structural changes in tight junctions and cytotoxicity caused by palmitoyl carnitine in Caco-2 and IEC-18 cells. J. Pharmacol. Exp. Ther. (1998) 287(1):395-402.
  • THANOU M, VERHOEF JC, JUNGINGER HE: Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. (2001) 52(2):117-126.
  • SCHIPPER NG, VARUM KM, ARTURSSON P: Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm. Res. (1996) 13(11):1686-1692.
  • LUESSEN HL, DE LEEUW BJ, LANGEMEYER MW et al.: Mucoadhesive polymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo. Pharm. Res. (1996) 13(11):1668-1672.
  • KOTZE AF, LUESSEN HL, DE LEEUW BJ et al.: N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res. (1997) 14(9):1197-1202.
  • KOTZE AF, THANOU MM, LUEBETAEN HL et al.: Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2). J. Pharm. Sci. (1999) 88(2):253-257.
  • SCHIPPER NG, OLSSON S, HOOGSTRAATE JA et al.: Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm. Res. (1997) 14(7):923-929.
  • SMITH J, WOOD E, DORNISH M: Effect of chitosan on epithelial cell tight junctions. Pharm. Res. (2004) 21(1):43-49.
  • WONG V, GUMBINER B: A synthetic peptide corresponding to the extracellular domain of occludin perturbes the tight junction permeability barrier. J. Cell Biol. (1997) 136(2):399-409.
  • LACAZ-VIEIRA F, JAEGER MMM, FARSHORI P et al.: Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J. Membrane Biol. (1999) 168:289-297.
  • TAVELIN S, HASHIMOTO K, MALKINSON J et al.: A new principle for tight junction modulation based on occludin peptides. Mol. Pharmacol. (2003) 64(6):1530-1540.
  • VAN ITALLIE CM, ANDERSON JM: Claudins and epithelial paracellular transport. Annu. Rev. Physiol. (2006) 68:403-429.
  • HANNA PC, WIECKOWSKI EU, MIETZNER TA, MCCLANE BA: Mapping of functional regions of Clostridium perfringens type A enterotoxin. Infect. Immun. (1992) 60(5):2110-2114.
  • MCCLANE BA, CHAKRABARTI G: New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe (2004) 10(2):107-114.
  • KATAHIRA J, INOUE N, HORIGUCHI Y, MATSUDA M, SUGIMOTO N: Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J. Cell Biol. (1997) 136(6):1239-1247.
  • FUJITA K, KATAHIRA J, HORIGUCHI Y et al.: Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett. (2000) 476(3):258-261.
  • SONODA N, FURUSE M, SASAKI H et al.: Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol. (1999) 147(1):195-204.
  • KONDOH M, MASUYAMA A, TAKAHASHI A et al.: A novel strategy for the enhancement of drug absorption using a claudin modulator. Mol. Pharmacol. (2005) 67(3):749-756.
  • MITIC LL, VAN ITALLIE CM, ANDERSON JM: Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am. J. Physiol. Gastrointest. Liver Physiol. (2000) 279(2):G250-G254.
  • HOU J, GOMES AS, PAUL DL, GOODENOUGH DA: Study of claudin function by RNA interference. J. Biol. Chem. (2006) 281(47):36117-36123.
  • SALAMA NN, EDDINGTON ND, FASANO A: Tight junction modulation and its relationship to drug delivery. Adv. Drug Deliv. Rev. (2006) 58(1):15-28.
  • FASANO A, BAUDRY B, PUMPLIN DW et al.: Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA (1991) 88(12):5242-5246.
  • FASANO A, FIORENTINI C, DONELLI G et al.: Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J. Clin. Invest. (1995) 96(2):710-720.
  • FASANO A, UZZAU S: Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest. (1997) 99(6):1158-1164.
  • DI PIERRO M, LU R, UZZAU S et al.: Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem. (2001) 276(22):19160-19165.
  • SALAMA NN, FASANO A, THAKAR M, EDDINGTON ND: The impact of DeltaG on the oral bioavailability of low bioavailable therapeutic agents. J. Pharmacol. Exp. Ther. (2005) 312(1):199-205.
  • FASANO A, UZZAU S, FIORE C, MARGARETTEN K: The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology (1997) 112(3):839-846.
  • JOHNSON PH, QUAY SC: Advances in nasal drug delivery through tight junction technology. Expert Opin. Drug Deliv. (2005) 2(2):281-298.
  • TAKAHASHI A, KONDOH M, MASUYAMA A et al.: Role of C-terminal regions of the C-terminal fragment of Clostridium perfringens enterotoxin in its interaction with claudin-4. J. Control Release (2005) 108(1):56-62.
  • YAMAMOTO A, UCHIYAMA T, NISHIKAWA R, FUJITA T, MURANISHI S: Effectiveness and toxicity screening of various absorption enhancers in the rat small intestine: effects of absorption enhancers on the intestinal absorption of phenol red and the release of protein and phospholipids from the intestinal membrane. J. Pharm. Pharmacol. (1996) 48(12):1285-1289.
  • AMASHEH S, MEIRI N, GITTER AH et al.: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci. (2002) 115(Pt 24):4969-4976.
  • ALEXANDRE MD, LU Q, CHEN YH: Overexpression of claudin-7 decreases the paracellular Cl- conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J. Cell Sci. (2005) 118(Pt 12):2683-2693.
  • YU AS, ENCK AH, LENCER WI, SCHNEEBERGER EE: Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J. Biol. Chem. (2003) 278(19):17350-17359.
  • STAEHELIN LA: Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. (1973) 13(3):763-786.
  • SASAKI H, MATSUI C, FURUSE K et al.: Dynamic behavior of paired claudin strands within apposing plasma membranes. Proc. Natl. Acad. Sci. USA (2003) 100(7):3971-3976.
  • RAHNER C, MITIC LL, ANDERSON JM: Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology (2001) 120(2):411-422.
  • HOLMES JL, VAN ITALLIE CM, RASMUSSEN JE, ANDERSON JM: Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr. Patterns (2006) 6(6):581-588.
  • MASUYAMA A, KONDOH M, SEGUCHI H et al.: Role of N-terminal amino acids in the absorption-enhancing effects of the c-terminal fragment of Clostridium perfringens enterotoxin. J. Pharmacol. Exp. Ther. (2005) 314(2):789-795.
  • HARADA M, KONDOH M, EBIHARA C et al.: Role of tyrosine residues in modulation of claudin-4 by the C-terminal fragment of Clostridium perfringens enterotoxin. Biochem. Pharmacol. (2007) 73(2):206-214.
  • EBIHARA C, KONDOH M, HARADA M et al.: Role of Tyr306 in the C-terminal fragment of Clostridium perfringens enterotoxin for modulation of tight junction. Biochem. Pharmacol. (2007) 73(6):824-830.
  • EBIHARA C, KONDOH M, HASUIKE N et al.: Preparation of a claudin-targeting molecule using a C-terminal fragment of Clostridium perfringens enterotoxin. J. Pharmacol. Exp. Ther. (2006) 316(1):255-260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.