163
Views
56
CrossRef citations to date
0
Altmetric
Review

Antibiological barrier nanovector technology for cancer applications

, PhD, , PhD, , PhD & , PhD
Pages 359-369 | Published online: 07 Aug 2007

Bibliography

  • NORTHFELT DW, MARTIN FJ, WORKING P et al.: Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. J. Clin. Pharmacol. (1996) 36(1):55-63.
  • JAIN RK: Transport of molecules, particles, and cells in solid tumors. Ann. Rev. Biomed. Eng. (1999) 1:241-263.
  • JANG SH, WIENTJES MG, LU D, AU JL: Drug delivery and transport to solid tumors. Pharm. Res. (2003) 20(9):1337-1350.
  • LANKELMA J, DEKKER H, LUQUE FR et al.: Doxorubicin gradients in human breast cancer. Clin. Cancer. Res. (1999) 5(7):1703-1707.
  • TANNOCK IF, LEE CM, TUNGGAL JK, COWAN DS, EGORIN MJ: Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res. (2002) 8(3):878-884.
  • BALUK P, HASHIZUME H, MCDONALD DM: Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. (2005) 15(1):102-111.
  • BLUME G, CEVC G: Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta (1990) 1029(1):91-97.
  • GABIZON AA: Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin. Cancer Res. (2001) 7(2):223-225.
  • PEGRAM M, SLAMON D: Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Oncol. (2000) 27(5 Suppl. 9):13-19.
  • SAKAMOTO JH, SMITH BR, XIE B et al.: The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents. Technol. Cancer Res. Treat. (2005) 4(6):627-636.
  • SLAMON DJ, LEYLAND-JONES B, SHAK S et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. (2001) 344(11):783-792.
  • DRUKER BJ, TAMURA S, BUCHDUNGER E et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. (1996) 2(5):561-566.
  • DRUKER BJ: Imatinib as a paradigm of targeted therapies. Adv. Cancer Res. (2004) 91:1-30.
  • DRUKER BJ, GUILHOT F, O'BRIEN SG et al.: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. (2006) 355(23):2408-2417.
  • FERRARI M: Nanovector therapeutics. Curr. Opin. Chem. Biol. (2005) 9(4):343-346.
  • FERRARI M: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer (2005) 5(3):161-171.
  • LI KC, PANDIT SD, GUCCIONE S, BEDNARSKI MD: Molecular imaging applications in nanomedicine. Biomed. Microdevices (2004) 6(2):113-116.
  • AKERMAN ME, CHAN WC, LAAKKONEN P, BHATIA SN, RUOSLAHTI E: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA (2002) 99(20):12617-12621.
  • LI L, WARTCHOW CA, DANTHI SN et al.: A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys. (2004) 58(4):1215-1227.
  • PAN D, TURNER JL, WOOLEY KL: Folic acid-conjugated nanostructured materials designed for cancer cell targeting. Chem. Commun. (Camb) (2003) (19):2400-2401.
  • PIROLLO K, XU L, CHANG E: Immunoliposomes: a Targeted Delivery Tool for Cancer Treatment. Curiel D (Ed.), Wiley-Liss (2002).
  • QUINTANA A, RACZKA E, PIEHLER L et al.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. (2002) 19(9):1310-1316.
  • WINTER PM, CARUTHERS SD, KASSNER A et al.: Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel α(nu)β3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer. Res. (2003) 63(18):5838-5843.
  • DELLIAN M, YUAN F, TRUBETSKOY VS, TORCHILIN VP, JAIN RK: Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer (2000) 82(9):1513-1518.
  • JULIANO RL, STAMP D: Effect of particle-size and charge on clearance rates of liposomes and liposome encapsulated drugs. Biochem. Bioph. Res. Co. (1975) 63(3):651-658.
  • DECUZZI P, FERRARI M: The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials (2007) 28:2915-2922.
  • SANGA S, SINEK JP, FRIEBOES HB et al.: Mathematical modeling of cancer progression and response to chemotherapy. Expert. Rev. Anticancer. Ther. (2006) 6(10):1361-1376.
  • CHARNAY C, LEE A, MAN SQ et al.: Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties. J. Phys. Chem. B (2003) 107(30):7327-7333.
  • HIRSCH LR, STAFFORD RJ, BANKSON JA et al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA (2003) 100(23):13549-13554.
  • LOO C, LIN A, HIRSCH L et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer. Res. Treat. (2004) 3(1):33-40.
  • O'NEAL DP, HIRSCH LR, HALAS NJ, PAYNE JD, WEST JL: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. (2004) 209(2):171-176.
  • IZZO F, THOMAS R, DELRIO P et al.: Radiofrequency ablation in patients with primary breast carcinoma: a pilot study in 26 patients. Cancer (2001) 92(8):2036-2044.
  • ROY I, OHULCHANSKYY TY, PUDAVAR HE et al.: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. (2003) 125(26):7860-7865.
  • YAN F, KOPELMAN R: The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem. Photobiol. (2003) 78(6):587-591.
  • OYEWUMI MO, MUMPER RJ: Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy. Bioconjug. Chem. (2002) 13(6):1328-1335.
  • MAY DJ, ALLEN JS, FERRARA KW: Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans. Ultrason Ferroelectr. Freq. Control (2002) 49(10):1400-1410.
  • BERGEY EJ, LEVY L, WANG XP et al.: DC magnetic field induced magnetocytolysis of cancer cells targeted by LH-RH magnetic nanoparticles in vitro. Biomed. Microdevices (2002) 4(4):293-299.
  • ISHII D, KINBARA K, ISHIDA Y et al.: Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature (2003) 423(6940):628-632.
  • POTINENI A, LYNN DM, LANGER R, AMIJI MM: Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control Release (2003) 86(2-3):223-234.
  • DUNCAN R: The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. (2003) 2(5):347-360.
  • AIRD WC: Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. (2007) 100(2):158-173.
  • NERI D, BICKNELL R: Tumour vascular targeting. Nat. Rev. Cancer (2005) 5(6):436-446.
  • VOLDBORG BR, DAMSTRUP L, SPANG-THOMSEN M, POULSEN HS: Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol. (1997) 8(12):1197-1206.
  • WITTE L, HICKLIN DJ, ZHU Z et al.: Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev. (1998) 17(2):155-161.
  • BASSETT SE, FENNEWALD SM, KING DJ et al.: Combinatorial selection and edited combinatorial selection of phosphorothioate aptamers targeting human NF-κB RelA/p50 and RelA/RelA. Biochemistry (2004) 43(28):9105-9115.
  • PASQUALINI R, KOIVUNEN E, RUOSLAHTI E: α v integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. (1997) 15(6):542-546.
  • WAUTIER JL, WAUTIER MP: Erythrocyte adhesion to the vascular endothelium. Transfus. Clin. Biol. (1999) 6(6):397-402.
  • AFSHAR-KHARGHAN V, THIAGARAJAN P: Leukocyte adhesion and thrombosis. Curr. Opin. Hematol. (2006) 13(1):34-39.
  • BARUCH D: Platelet–vessel wall interactions. Therapie (2006) 61(5):371-378.
  • ENIOLA AO, HAMMER DA: Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: effect of degradation on targeting activity. Biomaterials (2005) 26(6):661-670.
  • KOZIARA JM, LOCKMAN PR, ALLEN DD, MUMPER RJ: In situ blood–brain barrier transport of nanoparticles. Pharm. Res. (2003) 20(11):1772-1778.
  • LOCKMAN PR, MUMPER RJ, KHAN MA, ALLEN DD: Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. (2002) 28(1):1-13.
  • LOCKMAN PR, OYEWUMI MO, KOZIARA JM et al.: Brain uptake of thiamine-coated nanoparticles. J. Control Release (2003) 93(3):271-282.
  • KIRCHER MF, MAHMOOD U, KING RS, WEISSLEDER R, JOSEPHSON L: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. (2003) 63(23):8122-8125.
  • NEUWELT EA, VARALLYAY P, BAGO AG et al.: Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol. (2004) 30(5):456-471.
  • STEINIGER SC, KREUTER J, KHALANSKY AS et al.: Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer (2004) 109(5):759-767.
  • FERRARI M, FRANK M, GROVE C: Particles for Oral Delivery of Peptides and Proteins. In: USPTO. USA (2002).
  • PARK JW: Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. (2002) 4(3):95-99.
  • GABIZON A, SHMEEDA H, HOROWITZ AT, ZALIPSKY S: Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv. Drug Deliv. Rev. (2004) 56(8):1177-1192.
  • SAUL JM, ANNAPRAGADA A, NATARAJAN JV, BELLAMKONDA RV: Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Control Release (2003) 92(1-2):49-67.
  • GHAGHADA KB, SAUL J, NATARAJAN JV, BELLAMKONDA RV, ANNAPRAGADA AV: Folate targeting of drug carriers: a mathematical model. J. Control Release (2005) 104(1):113-128.
  • SAUL JM, ANNAPRAGADA AV, BELLAMKONDA RV: A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J. Control Release (2006) 114(3):277-287.
  • GOREN D, HOROWITZ AT, TZEMACH D et al.: Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. (2000) 6(5):1949-1957.
  • MAJOROS IJ, MYC A, THOMAS T, MEHTA CB, BAKER JR: PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules (2006) 7(2):572-579.
  • COHEN MH, MELNIK K, BOIARSKI AA, FERRARI M, MARTIN FJ: Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed. Microdevices (2003) 5(3):253-259.
  • ROLLAND JP, MAYNOR BW, EULISS LE et al.: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. (2005) 127(28):10096-10100.
  • VAN DILLEN T, VAN BLAADEREN A, POLMAN A: Ion beam shaping of colloidal assemblies. Materials Today (2004):40-46.
  • KOHLI P, MARTIN CR: Smart nanotubes for biotechnology. Curr. Pharm. Biotechnol. (2005) 6(1):35-47.
  • JAIN TK, MORALES MA, SAHOO SK, LESLIE-PELECKY DL, LABHASETWAR V: Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. (2005) 2(3):194-205.
  • MANCHESTER M, SINGH P: Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. (2006) 58(14):1505-1522.
  • SAKHALKAR HS, DALAL MK, SALEM AK et al.: Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proc. Natl. Acad. Sci. USA (2003) 100(26):15895-15900.
  • SIMBERG D, DUZA T, PARK JH et al.: Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA (2007) 104(3):932-936.
  • YANG X, WANG H, BEASLEY DW et al.: Selection of thioaptamers for diagnostics and therapeutics. Ann. NY Acad. Sci. (2006) 1082:116-119.
  • FAROKHZAD OC, KARP JM, LANGER R: Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. (2006) 3(3):311-324.
  • TATEISHI N, SUZUKI Y, SOUTANI M, MAEDA N: Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance. J. Biomech. (1994) 27(9):1119-1125.
  • GAVZE E, SHAPIRO M: Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J. Fluid. Mech. (1998) 371:59-79.
  • PIERRES A, BENOLIEL AM, ZHU C, BONGRAND P: Diffusion of microspheres in shear flow near a wall: Use to measure binding rates between attached molecules. Biophysical. J. (2001) 81(1):25-42.
  • DECUZZI P, FERRARI M: The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials (2006) 27(30):5307-5314.
  • MCDONALD DM, BALUK P: Significance of blood vessel leakiness in cancer. Cancer Res. (2002) 62(18):5381-5385.
  • HASHIZUME H, BALUK P, MORIKAWA S et al.: Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. (2000) 156(4):1363-1380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.