180
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Sustained transscleral drug delivery

, PhD & , MS
Pages 1-10 | Published online: 21 Dec 2007

Bibliography

  • Congdon N, O'Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004;122:477-85
  • Friedman DS, O'Colmain B, Tomany SC, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004;122:564-72
  • Emerson MV, Lauer AK. Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs 2007;21:245-57
  • Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 2000;41:961-4
  • Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol 2002;47(Suppl 1):S41-S52
  • Mohammad DA, Sweet BV, Elner SG. Retisert: is the new advance in treatment of uveitis a good one? Ann Pharmacother 2007;41:449-54
  • Dugel PU, Cantrill HL, Eliott D, et al. Clinical safety and preliminary efficacy of an intravitreal triamcinolone implant (I-vation™ TA) in DME. ARVO Annual Meeting 2007; 2007 May 6 – 10; Fort Lauderdale, Florida; Poster 1413.
  • Ciulla TA, Criswell MH, Danis RP, et al. Choroidal neovascular membrane inhibition in a laser treated rat model with intraocular sustained release triamcinolone acetonide microimplants. Br J Ophthalmol 2003;87:1032-7
  • Robinson MR, Baffi J, Yuan P, et al. Safety and pharmacokinetics of intravitreal 2-methoxyestradiol implants in normal rabbit and pharmacodynamics in a rat model of choroidal neovascularization. Exp Eye Res 2002;74:309-17
  • Bourges JL, Bloquel C, Thomas A, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 2006;58:1182-202
  • Bochot A, Fattal E, Boutet V, et al. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci 2002;43:253-9
  • Heller J. Ocular delivery using poly(ortho esters). Adv Drug Deliv Rev 2005;57:2053-62
  • Yasukawa T, Ogura Y, Tabata Y, et al. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 2004;23:253-81
  • Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev 2006;58:1164-81
  • Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004;1:99-114
  • Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 2003;3:45-56
  • Tornquist P, Alm A, Bill A. Permeability of ocular vessels and transport across the blood–retinal-barrier. Eye 1990;4(Pt 2):303-9
  • Tsuboi S, Pederson JE. Volume flow across the isolated retinal pigment epithelium of cynomulgus monkey eyes. Invest Ophthalmol Vis Sci 1988;29:1652-5
  • Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006;3:275-87
  • Pontes de Carvalho RA, Krausse ML, Murphree AL, et al. Delivery from episcleral exoplants. Invest Ophthalmol Vis Sci 2006;47:4532-9
  • Raiskup-Wolf F, Eljarrat-Binstock E, Rehak M, et al. Delivery of gentamicin to the rabbit eye using hydrogel and iontophoresis. Cesk Slov Oftalmol 2006;62:175-82
  • Li SK, Zhang Y, Zhu H, et al. Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport. J Pharm Sci 2005;94:847-60
  • Molokhia SA, Jeong EK, Higuchi WI, et al. Examination of penetration routes and distribution of ionic permeants during and after transscleral iontophoresis with magnetic resonance imaging. Int J Pharm 2007;335:46-53
  • Kralinger MT, Voigt M, Kieselbach GF, et al. Ocular delivery of acetylsalicylic acid by repetitive coulomb-controlled iontophoresis. Ophthal Res 2003;35:102-10
  • Halhal M, Renard G, Courtois Y, et al. Iontophoresis: from the lab to the bed side. Exp Eye Res 2004;78:751-7
  • Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Rel 2006;110:479-89
  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 2005;57:2063-79
  • Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 1998;87:1479-88
  • Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 2000;41:1181-5
  • Kao JC, Geroski DH, Edelhauser HF. Transscleral permeability of fluorescent-labeled antibiotics. J Ocul Pharmacol Ther 2005;21:1-10
  • Okabe K, Kimura H, Okabe J, et al. Effect of benzalkonium chloride on transscleral drug delivery. Invest Ophthalmol Vis Sci 2005;46:703-8
  • Tsuboi S, Pederson JE. Effect of plasma osmolality and intraocular pressure on fluid movement across the blood–retinal barrier. Invest Ophthalmol Vis Sci 1988;29:1747-9
  • Pitkanen L, Ranta VP, Moilanen H, et al. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci 2005;46:641-6
  • Cheruvu NP, Kompella UB. Bovine and porcine transscleral solute transport: influence of lipophilicity and the choroid-Bruch's layer. Invest Ophthalmol Vis Sci 2006;47:4513-22
  • Hillenkamp J, Hussain AA, Jackson TL, et al. Compartmental analysis of taurine transport to the outer retina in the bovine eye. Invest Ophthalmol Vis Sci 2004;45:4099-105
  • Hillenkamp J, Hussain AA, Jackson TL, et al. Taurine uptake by human retinal pigment epithelium: implications for the transport of small solutes between the choroid and the outer retina. Invest Ophthalmol Vis Sci 2004;45:4529-34
  • Hillenkamp J, Hussain AA, Jackson TL, et al. The influence of path length and matrix components on ageing characteristics of transport between the choroid and the outer retina. Invest Ophthalmol Vis Sci 2004;45:1493-8
  • Kansara V, Mitra AK. Evaluation of an ex vivo model implication for carrier-mediated retinal drug delivery. Curr Eye Res 2006;31:415-26
  • Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci 2007;48:2230-7
  • Kim H, Robinson MR, Lizak MJ, et al. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci 2004;45:2722-31
  • Kim H, Lizak MJ, Tansey G, et al. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng 2005;33:150-64
  • Kim SH, Galban CJ, Lutz RJ, et al. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging. Invest Ophthalmol Vis Sci 2007;48:808-14
  • Li SK, Jeong EK, Hastings MS. Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis. Invest Ophthalmol Vis Sci 2004;45:1224-31
  • Robinson MR, Lee SS, Kim H, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 2006;82:479-87
  • Voigt M, Kralinger M, Kieselbach G, et al. Ocular aspirin distribution: a comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest Ophthalmol Vis Sci 2002;43:3299-306
  • Chiang TH, Lam H, Quijano R, et al. Static and dynamic stresses during valve closure of a bileaflet mechanical heart valve prosthesis. Int J Artif Organs 1991;14:781-8
  • Carcaboso AM, Bramuglia GF, Chantada GL, et al. Topotecan vitreous levels after periocular or intravenous delivery in rabbits: an alternative for retinoblastoma chemotherapy. Invest Ophthalmol Vis Sci 2007;48:3761-7
  • Ayalasomayajula SP, Kompella UB. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm Res 2004;21:1797-804
  • Hayden BC, Jockovich ME, Murray TG, et al. Pharmacokinetics of systemic versus focal carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci 2004;45:3644-9
  • Simpson AE, Gilbert JA, Rudnick DE, et al. Transscleral diffusion of carboplatin: an in vitro and in vivo study. Arch Ophthalmol 2002;120:1069-74
  • Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol 2006;142:777-87
  • Schmack I, Hubbard GB, Kang SJ, et al. Ischemic necrosis and atrophy of the optic nerve after periocular carboplatin injection for intraocular retinoblastoma. Am J Ophthalmol 2006;142:310-15
  • Einmahl S, Savoldelli M, D'Hermies F, et al. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. Invest Ophthalmol Vis Sci 2002;43:1533-9
  • Ohtori A, Toko KJ. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biol Pharm Bull (BPZ) 1994;17:283-90
  • Araie M, Maurice D. The loss of flourescein, flourescein glucuronide and flourescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp Eye Res (EPL) 1991;52:27-39
  • Friedrich S, Cheng Y, Saville B. Drug distribution in the vitreous humor of the human eye: the effect of intravitreal injection position and volume. Cur Eye Res 1997;16:663-9
  • Friedrich S, Saville B, Cheng Y. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann Biomed Eng 1997;25:303-14
  • Mac Gabhann F, Demetriades AM, Deering T, et al. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng 2007;35:615-30
  • Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–nretina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006;58:1136-63
  • Xu J, Heys JJ, Randolph TW, Barocas VH. Permeability, and diffusion in the vitreous humor: implications for controlled drug delivery. Pharm Res 2000;17:664-9
  • Olsen TW, Aaberg SY, Geroski DH, et al. Human sclera: thickness and surface area. Am J Ophthalmol 1998;125:237-41
  • Olsen TW, Sanderson S, Feng X, et al. Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 2002;43:2529-32
  • Carrasquillo KG, Ricker JA, Rigas IK, et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic) acid microspheres. Invest Ophthalmol Vis Sci 2003;44:290-9
  • Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 2003;44:1192-201
  • Okabe K, Kimura H, Okabe J, et al. Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device. Invest Ophthalmol Vis Sci 2003;44:2702-7
  • Kato A, Kimura H, Okabe K, et al. Feasibility of drug delivery to the posterior pole of the rabbit eye with an episderal implant. Invest Ophthalmol Vis Sci 2004;45:238-44
  • Wang Y, Challa P, Epstein DL, et al. Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment. Biomaterials 2004;25:4279-85
  • Gilbert JA, Simpson AE, Rudnick DE, et al. Transscleral permeability and intraocular concentrations of cisplatin from a collagen matrix. J Control Rel (2003) 89:409-417.
  • Lee SB, Geroski DH, Prausnitz MR, et al. Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res 2004;78:599-607
  • Cruysberg LP, Nuijts RM, Geroski DH, et al. In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J Ocul Pharmacol Ther 2002;18:559-69
  • Van Quill KR, Dioguardi PK, Tong CT, et al. Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology 2005;112:1151-8
  • Yoshida A, Ishiko S, Kojima M. Outward permeability of blood–retinal barrier. Graefes Arch Clin Exp Ophthalmol 1992;230:78-83
  • Yoshida A, Kojima M, Ishiko S. Inward and outward permeability of the blood–retinal barrier. In: Cunha-Vaz J and Leite E, editors. Ocular Fluorophotometry and the Future. Amsterdam: Kugler & Ghedini Publishers; 1989. p. 89-97
  • Stay MS, Xu J, Barocas VH, et al. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res 2000;20:96-102
  • Missel PJ. Finite and infinitesimal representations of the vasculature: ocular drug clearance by vascular and hydraulic effects. Ann Biomed Eng 2002;30:1128-39
  • Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res 2002;19:1636-47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.