679
Views
170
CrossRef citations to date
0
Altmetric
Reviews

Polymeric nanoparticles for the drug delivery to the central nervous system

, PhD, , , PhD, &
Pages 155-174 | Published online: 05 Feb 2008

Bibliography

  • Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Cur Drug Del 2006;21:219-32
  • Pardridge WM. Brain Drug Targeting: The Future of Brain Drug Development. Cambridge: CPU; 2001
  • Pardridge WM. Blood Brain Barrier drug targeting: the future of brain drug development. Mol Interv 2003;3:90-105
  • Burke M, Langer R, Brim H. Central Nervous System: Drug Delivery to Treat. New York: John Wiley & Sons, Inc.; 1999
  • Abraham MH, Platts JA. The blood brain barrier and drug delivery to the CNS. Bengley DJ, Bradbury MW, Kreuter J, editors. New York: Marcel Dekker Inc.; 2000
  • Pardridge WM. Introduction to the Blood-brain Barrier. New York: Cambridge University Press; 1998
  • Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005;76:22-76
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 2005;298:274-92
  • McIntosh TK, Saatman RE, Raghupathi R, et al. Molecular and cellular sequelae of experimental traumatic brain injury: pathogenic mechanisms. Neuropathol Appl Neurobiol 1998;24:251-67
  • Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999;58:312-28
  • Martin A, Jiang WG. Tight junctions and their role in cancer metastasis. Histol Histopathol 2001;16:1183-95
  • Papadopoulos MC, Saadoun S, Woodrow CJ, et al. Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol 2001;27:384-95
  • Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neurooncol 2000;50:99-108
  • Rautio J, Chickale PJ. Drug delivery systems for brain tumor therapy. Curr Pharm Des 2004;10:1341-53
  • Su Y, Sinko PJ. Drug delivery across the blood-brain barrier: why is it difficult? How to measure and improve it? Exp Opin Drug Del 2006;3:419-35
  • Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91:2076-80
  • Kroll RA, Pagel MA, Muldoon LL, et al. Increasing volume distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 1996;38:752-4
  • Siegal T, Rubinstein R, Bokstein F, et al. In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosur 2000;92:599-605
  • Doolittle ND, Petrillo A, Bell S, Cummings P, Eriksen S. Blood-brain barrier disruption for the treatment of malignant brain tumors: The National Program. J Neurosci Nurs 1998;30:81-90
  • Anderson BD. Prodrugs for improved CNS delivery. Adv Drug Del Rev 1996;19:171-202
  • Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the Central Nervous System: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem 2006;13:1707-25
  • Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002;1:131-9
  • Gaillard PJ, Visser CC, Boer de AG. Targeted delivery across the blood-brain barrier. Exp Opin Drug Deliv 2005;2:299-309
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel 2001;70:1-20
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mat Sci 2002;6:319-27
  • Emerich DF. Nanomedicine-prospective therapeutic and diagnostic applications. Exp Opin Biol Ther 2005;5:1-5
  • Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Exp Opin Drug Del 2007;4:403-16
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Del Rev 2006;58:1532-55
  • Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Nanotoday 2005:18-26
  • Sachdeva MS. Drug targeting systems for cancer chemotherapy. Exp Opin Investig Drugs 1998;7:1849-64
  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long circulating polymeric nanospheres. Science 1994;263:1660-3
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318
  • Kreuter J. Nanoparticles- a historical perspective. Int J Pharm 2007;331:1-10
  • Silva GA. Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. Surg Neurol 2007;67:113-6
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007;12:54
  • Popovic V, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 2006;314:120-6
  • Roney C, Kulkarni P, Arora V, et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer's disease. J Control Rel 2005;108:193-214
  • Olivier JC. Drug Transport to Brain with Targeted Nanoparticles. NeuroRX 2005;2:108-19
  • Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci 1998;87:1305-7
  • Kabanov AV, Batrakova EV. New Technologies for drug delivery across the Blood Brain Barrier. Curr Pharm Des 2004;10:1355-63
  • Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2007;15:641-63
  • Müller RH, Lherm C, Herbert J, Couvreur P. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 1990;11:590-5
  • Müller RH, Lherm C, Herbort J, Blunk T, Couvreur P. Alkylcyanoacrylate drug carriers: I. Physicochemical characterization of nanoparticles with different alkyl chain length. Int J Pharm 1992;84:1-11
  • Lukowski G, Müller RH, Müller BW, Dittgen M. Acrylic acid copolymer nanoparticles for drug delivery: I. Characterization of the surface properties relevant for in vivo organ distribution. Int J Pharm 1992;84:23-31
  • Lherm C, Müller RH, Puisieux F, Couvreur P. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 1992;84:13-22
  • Kante B, Couvreur P, Dubois-Krack G, et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: Free nanoparticles. J Pharm Sci 1982;71:786-90
  • Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 1992;10:191-9
  • Vauthier C, Dubernet C, Chauvierre C, et al. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Rel 2003;93:151-60
  • Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 1992;10:191-9
  • Merle P, Si-Ahmed S, Habersetzer F, et al. Phase 1 study of intra-arterial hepatic (IAH) delivery of doxorubicin-transdrug® (DT) for patients with advanced hepatocellular carcinoma (HCC). J Clin Virol 2006;36:S179
  • Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 1999;48:342-53
  • Bazile DV, Ropert C, Huve P, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 1992;13:1093-102
  • von Burkersroda F, Gref R, Gopferich A. Erosion of biodegradable block copolymers made of poly(D,L-lactid acid) and poly(ethylene glycol). Biomaterials 1997;18:1599-607
  • Stolnik S, Dunn SE, Garnett MC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res 1994;11:1800-8
  • Verrecchia T, Spenlehauer G, Bazile DV, et al. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J Control Rel 1995;36:49-61
  • Le Ray AM, Vert M, Gautier JC, Benoît JP. Fate of [14C]poly(-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int J Pharm 1994;106:201-11
  • Li YP, Pei YY, Zhang XY, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Rel 2001;71:203-11
  • Ariasa JL, Gallardoa V, Ruiza MA, Delgado AV. Ftorafur loading and controlled release from poly(ethyl-2-cyanoacrylate) and poly(butylcyanoacrylate) nanospheres. Int J Pharm 2007;337:282-90
  • Tusij A. The blood-brain barrier and drug delivery to the CNS. New York: Marcel Dekker, Inc.; 2000
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003;36:R167-81
  • Alexiou C, Arnold W, Klein RJ, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000;60:6641-8
  • Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical applications. Progr Solid State Chem 2006;34:237-47
  • Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 2005;100:1-11
  • Lübbe AS, Bergermann Ch, Riess H, et al. Clinical experience with magnetic drug targeting: a Phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996;56:4686-93
  • Kopelman R, Koo YEL, Philbert M, et al. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mat 2005;293:404-10
  • Beata C, Bradford AM, Allan DE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008;29:487-96
  • Hassan EE, Gallo JM. Targeting anticancer drugs to the brain. I: Enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J Drug Target 1993;1:7-14
  • Pulfer SK, Gallo JM. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. J Drug Target 1998;6:215-27
  • Pulfer SK, Ciccotto SL, Gallo JM. Distribution of small magnetic particles in brain tumor-bearing rats. J Neurooncol 1999;41:99-105
  • Yellen BB, Forbes ZG, Halverson DS, et al. Targeted drug delivery to magnetic implants for therapeutic applications. J Magn Magn Mater 2005;293:647-54
  • Vinogradov SV, Batrakova E, Kabanov AV. Poly(ethylene glycol)-polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B Biointerfaces 1999;16:291-304
  • Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Del Rev 2002;54:135-47
  • Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjugate Chem 2004;15:50-60
  • Gupta AK, Berry C, Gupta M, Curtis A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobiosci 2003;2:255-61
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. In situ blood-brain barrier transport of nanoparticles. Pharm Res 2003;20:1772-8
  • Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J Control Rel 2003;93:271-82
  • Lockman PR, Koziara J, Roder KE, et al. In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles. Pharm Res 2003;20:705-13
  • Allen DD, Oki J, Smith QR. An update on the in situ brain perfusion technique: simple, faster, better. Pharmacol Res 1997;14:337
  • Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 1984;247:H484-93
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Rel 2004;30:259-69
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004;12:635-41
  • Fenart L, Casanova A, Dehouck B, et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999;291:1017-22
  • Lu W, Zhang Y, Tan YZ, et al. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Rel 2005;107:428-48
  • Lu W, Sun Q, Wan J, et al. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 2006;66:11878-87
  • Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Rel 2007;118:38-53
  • Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm 2007;344:103-9
  • Tröester SD, Kreuter J. Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. J Microencaps 1992;9:19-28
  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. J Control Rel 1997;49:81-7
  • Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997;14:325-8
  • Ambruosi A, Khalansky AS, Yamamoto H, et al. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006;14:97-105
  • Ambruosi A, Yamamoto H, Kreuter J. Body distribution of polysorbate-80 and doxorubicin-loaded [14C]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats. J Drug Target 2003;13:535-42
  • Steiniger SCJ, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004;109:759-67
  • Friese A, Seiller E, Quack G, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 2000;49:103-9
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995;674:171-4
  • Calvo JP, Gouritin B, Chacun H, et al. D. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001;18:1157-66
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Del Rev 2001;47:65-81
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002;10:317-25
  • Gessner A, Olbrich C, Schröder W, et al. The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 2001;214:87-91
  • Anderberg EK, Nyström C, Artursson P. Epithelial transport of drugs in cell culture. VII: effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J Pharm Sci 1992;81:879-87
  • Nerurkar MM, Ho NF, Burton PS, et al. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J Pharm Sci 1997;86:813-21
  • Yamazaki T, Sato Y, Hanai M, et al. Non-ionic detergent tween 80 modulates VP-16 resistance in classical multidrug resistant K562 cells viaenhancement of VP-16 influx. Cancer Lett 2000;149:153-61
  • Woodcock DM. Reversal of multidrug resistance by surfactants. Br J Cancer 1992;66:62-8
  • Raub TJ, Kuentzel SL, Sawada GA. Permeability of bovine brain microvessel endothelial cells in vitro: Barrier tightening by a factor released from astroglioma cells. Exp Cell Res 1992;199:330-40
  • Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999;16:1836-42
  • Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409-16
  • Sun W, Xie C, Wang H, Hu Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 2004;25:3065-71
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003;2:214-21
  • Torchilin VP. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 1998;15:1-19
  • Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEGcoated sterically stabilized nanospheres. Adv Drug Del Rev 1995;16:215-33
  • Stolink S, Heald CR, Neal J, et al. Polylactide-poly(ethylene glycol) micellar-like particles as potential drug carriers: production, colloidal properties and biological performance. J Drug Targeting 2001;9:361-78
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issue in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003;42:463-78
  • Gref R, Lück M, Quellec P, et al. Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influence of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000;18:301-13
  • Calvo JP, Gouritin B, Brigger I, et al. PEGylated polycyanoacrylate nanoparticles as vectors for drug delivery in prion diseases. J Neurosci Met 2001;111:151-5
  • Calvo JP, Gouritin B, Villarroya H. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in rats. Eur J Neurosci 2002;15:1317-26
  • Brigger I, Morizet J, Aubert G, et al. Poly(ethylene glycol)-coated hexadecylcyanoacrilate nanospheres display a combined effect for brain tumor targeting. J Pharm Exp Ther 2002;303:928-36
  • Garcia-Garcia E, Andrieux K, Gil S, et al. A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm 2005;298:310-4
  • Garcia-Garcia E, Gil S, Andrieux K, et al. A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Curr Enz Inh 2005;1:1400-8
  • Kim HR, Andrieux K, Gil S, et al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromol 2007;8:793-9
  • Kim HR, Ryoung GS, Andrieux K, et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Molec Life Sci 2007;64:356-64
  • Kim HR, Andrieux K, Delomenie C, et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 2007;28:2252-61
  • Dams ET, Laverman P, Oyen WJ, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 2000;292:1071-9
  • Laverman P, Carstens MG, Boerman OC, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 2001;298:607-12
  • Laverman P, Boerman OC, Oyen WJG, et al. In vivo applications of PEG liposomes: unexpected observations. Crit Rev Ther Drug Carr Syst 2001;18:551-66
  • Ishida T, Maeda R, Ichihara M, et al. The accelerated clearance on repeated injection of pegylated liposomes in rats: laboratory and histopathological study. Cell Mol Biol Lett 2002;7:286
  • Ishida T, Maeda R, Ichihara M, et al. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Rel 2003;88:35-42
  • Ishida T, Masuda K, Ichikawa T, et al. Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm 2003;255:167-74
  • Ishida T, Ichikawa T, Ichihara M, et al. Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice. J Control Rel 2004;95:403-12
  • Ishida T, Harada M, Wang XY, et al. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Rel 2005;105:305-17
  • Ishida T, Ichihara M, Wang X, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Rel 2006;112:15-25
  • Ishida T, Ichihara M, Wang X, et al. Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Rel 2006;115:243-50
  • Vyas SP, Singh A, Sihorkar V. Ligand-receptor mediated drug delivery: an emerging paradigm in cellular drug targeting. Crit Rev Ther Drug Carr Syst 2001;189:1-76
  • Newton HB. Advances in strategies to improve drug delivery to brain tumors. Exp Rev Neurother 2006;6:1495-509
  • Miller D, Keller B, Borchardt R. Identification and distribution of insulin-receptors on cultured bovine brain microvessels endothelial cells: possible function in insulin processing in the blood-brain barrier. J Cell Physiol 1994;161:333-41
  • Shin SU, Friden P, Moran M, et al. Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci USA 1995;92:2820-4
  • Banks WA, Jaspan JB, Kastin AJ. Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassay. Peptides 1997;18:1257-62
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature 1984;312:162-3
  • Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism 1987;36:892-5
  • Qian ZM, Li HY, Sun HZ, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002;54:561-87
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996;93:14164-9
  • Giammona G, Cavallaro G, Pitarresi G. Studies of macromolecular prodrugs of zidovudine. Adv Drug Del Rev 1999;39:153-64
  • Friden PM, Walus LR, Musso GF, et al. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci USA 1991;88:4771-5
  • Lee HJ, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 2000;292:1048-52
  • Olivier JC, Huertas R, Jeong Lee H, et al. Synthesis of pegylated immunonanoparticles. Pharm Res 2002;19:1137-43
  • Pardridge WM, Olivier JC. Immunonanoparticles. US Patent 20050042298; 2005
  • Yesim A, Yemisci M, Andrieux K, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with monoclonal antibody OX26. Bioconjugate Chem 2005;16:1503-11
  • Beduneau A, Saulnier P, Hindre F, et al. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab' fragments. Biomaterials 2007;28:4978-90
  • Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45-53
  • Havrankova J, Brownstein M, Roth J. Insulin and insulin receptors in rodent brain. Diabetologia 1981;20:268-73
  • Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target 2006;14:191-214
  • Duffy KR, Pardridge WM. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 1987;420:32-8
  • Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985;313:756-61
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 1993;10:205-45
  • Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transctosis through the blood-brain barrier. Pharm Res 1995;12:807-16
  • Greenwood J, Love ER, Pratt OE. Kinetics of thiamine transport across the blood-brain barrier in the rat. J Physiol 1982;327:95-103
  • Said HS, Orbitz A, Kumar CK, et al. Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model caco-2. Am J Physiol 1999;277:C645-51
  • Zhao R, Gao F, Goldman D. Reduced folate carrier transports thiamine monophospate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol 2002;282:C1512-7
  • Lockman PR, Mumper RJ, Allen DD. Evaluation of blood-brain barrier thiamine efflux using the in situ rat brain perfusion method. J Neurochem 2003;86:637-44
  • Smith QR. Drug delivery to the brain and the role of carrier mediated transport. In: Drewes LR, Betz AL, editors. Frontiers in Cerebral Vascular Biology: Transport and its Regulation. New York: Plenum; 1993
  • Oyewumi MO, Liu S, Moscow JA, Mumper RJ. Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconjug Chem 2003;14:404-11
  • Egleton RD, Davis TP. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 1997;18:1431-9
  • Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood brain barrier. NeuroRx 2005;2:44-53
  • Polt R, Dhanasekaran M, Keyari CM. Glycosylated neuropeptides: a new vista for neuropsychopharmacology? Med Res Rev 2005;25:557-85
  • Polt R, Porreca F, Szabo L, et al. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA 1994;91:7114-8
  • Kihlberg J, Ahman J, Walse B, et al. Glycosilated peptide hormones: pharmacological properties and conformational studies of analogues of [1-desamino,8-D-arginine]vasopressin. J Med Chem 1995;38:161-9
  • Negri L, Lattanti R, Tabacco F, et al. Glycodermorphins: opioid peptides with potent and prolonged analgesic activity and enhanced blood-brain barrier penetration. Brit J Pharmacol 1998;124:1516-22
  • Dhanasekaran M, Polt R. New prospects for glycopeptide based analgesia: glycoside-induced penetration of the blood brain barrier. Curr Drug Del 2005;2:59-73
  • Lowery JL, Yeomans L, Keyari CM, et al. Glycosilation improves the central effects of DAMGO. Chem Biol Drug Des 2007;69:41-7
  • Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Rel 2005;108:84-96
  • Polt R, Palian MM. Glycopeptide analgesics. Drugs Future 2001;26:561-76
  • Casy AF, Parfitt RT. Opioid Analgesics. Chemistry and Receptors. New York: Plenum; 1986
  • Costantino L, Gandolfi F, Bossy-Nobs L, et al. Nanoparticulate drug carriers based on hybrid poly(d,l-lactide-co-glycolide)-dendron structures. Biomaterials 2006;27:4635-45
  • Tosi G, Rivasi F, Gandolfi F, et al. Conjugated poly(D,L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials 2005;26:4189-95
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Rel 2007;122:1-9
  • “Toxicology of Nanoparticles used in Health-care”, submitted to Committee of Toxicity of Chemicals in Food, Consumer Products and Environments, by Medicines and Health-care Products Regolatory Agency; 2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.