258
Views
34
CrossRef citations to date
0
Altmetric
Review

Biodegradable elastomers in drug delivery

Pages 175-187 | Published online: 05 Feb 2008

Bibliography

  • Yolles S, Eldridge J, Woodland J. Sustained delivery of drugs from polymer/drug mixtures. Polym News 1970;1:9-15
  • Amsden B. Curable elastomers: emerging materials for drug delivery and tissue engineering. Soft Matter 2007;3(11):1335-48
  • Pitt CG, Hendren RW, Schindler A, Woodward SC. The enzymatic surface erosion of aliphatic polyesters. J Control Rel 1984;1(1):3-14
  • Pitt CG, Schindler AE, Pitt CG, et al. Research Triangle Institute, assignee. Biodegradable Polymers of Lactones. US patent 4,379,138. 1983 April 5; 1983
  • Bruin P, Veenstra GJ, Nijenhuis AJ, Pennings AJ. Design and synthesis of biodegradable poly(ester-urethane) elastomer networks composed of non-toxic building blocks. Makromol Chem Rapid Commun 1988;9:589-94
  • Younes HM, Bravo-Grimaldo E, Amsden BG. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials 2004;25(22):5261-9
  • Amsden B, Wang S, Wyss U. Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(-caprolactone-co-D,L-lactide). Biomacromolecules 2004;54(4):1399-404
  • Kiyotsukuri T, Kanaboshi M, Tsutsumi N. Network polyester films from glycerol and dicarboxylic-acids. Polym Int 1994;33(1):1-8
  • Wang T, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20:602-6
  • Yang J, Webb AR, Ameer GA. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 2004;16(6):511
  • Yang J, Webb AR, Pickerill SJ, et al. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 2006;27(9):1889-98
  • Han Y-K, Edelman P, Huang S. Synthesis and characterization of crosslinked polymers for biomedical composites. J Macromol Sci Chem 1988;A25:847-69
  • Olson DA, Gratton SEA, DeSimone JM, Sheares VV. Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors. J Am Chem Soc 2006;128(41):13625-33
  • Storey RF, Warren SC, Allison CJ, et al. Synthesis of bioabsorbable networks from methacrylate-endcapped polyesters. Polymer 1993;34(20):4365-72
  • Helminen AO, Korhonen H, Seppala JV. Cross-linked poly(ϵ-caprolactone/D,L-lactide) copolymers with elastomeric properties. Macromol Chem Phys 2002;203:2630-9
  • Amsden B, Misra G, Gu F, Younes H. Synthesis and characterization of a photocrosslinked biodegradable elastomer. Biomacromolecules 2004;5(6):2479-86
  • Sinclair RG; Gulf Oil Corporation, assignee. Copolymers of D, L-lactide and epsilon caprolactone. US patent 4 045 418. 1977 August 30; 1977
  • Sinclair RG; Gulf Oil Corporation, assignee. Copolymers of L-(-)-lactide and epsilon caprolactone. US patent 4 057 537. 1977 November 8; 1977
  • Grijpma DW, Zondervanc GJ, Pennings AJ. High molecular weight copolymers of L-lactide and ϵ-caprolactone as biodegradable elastomeric implant materials. Polym Bull 1991;25:327-33
  • Sipos L, Zsuga M, Deak G. Synthesis of poly(L-lactide)-block-polyisobutylene-block-poly(L-lactide), a new biodegradable thermoplastic elastomer. Macromol Rapid Commun 1995;16:935-40
  • Tao H-J, MacKnight WJ, Gagnon KD, et al. Spectroscopic analysis of chain conformation distribution in a biodegradable polyester elastomer, poly(beta-hydroxyoctanoate). Macromolecules 1995;28(6):2016-22
  • Hiljanen-Vainio M, Karjalainen T, Seppala J. Biodegradable lactone copolymers. I. Characterization and mechanical behavior of epsilon-caprolactone and lactide copolymers. J Appl Polym Sci 1996;59(8):1281-8
  • Kylma J, Seppala J. Synthesis and characterization of a biodegradable thermoplastic poly(ester-urethane) elastomer. Macromolecules 1997;30:2876-82
  • Skarja G, Woodhouse K. Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. J Biomater Sci Polym Ed 1998;9(3):271-95
  • Kylma J, Hiljanen-Vainio M, Seppala J. Miscibility, morphology and mechanical properties of rubber-modified biodegradable poly(ester-urethanes). J Appl Polymer Sci 2000;76:1074-82
  • Bezwada RS, Cooper KL, Bezwada RS, et al. Ethicon Inc., assignee. Absorbable Elastomeric Polymer. US patent 6,113,624. 2000 Sep. 5
  • Bezwada RS, Scopelianos AG, Bezwada RS, et al. Ethicon, assignee. Elastomeric Medical Device. US patent 5,713,920. 1998 Feb. 3
  • Hiki S, Miyamoto M, Kimura Y. Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with L-lactide to obtain a biodegradable thermoplastic elastomer. Polymer 2000;41(20):7369
  • Pego AP, Poot AA, Grijpma DW, Feijen J. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties. J Biomater Sci Polym Ed 2001;12(1):35-53
  • Kim JH, Lee JH. Preparation and properties of poly(L-lactide)-block-poly(trimethylene carbonate) as biodegradable thermoplastic elastomer. Polym J 2002;34(3):203-8
  • Ba CY, Yang J, Hao QH, et al. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003;4(6):1827
  • Zhang Z, Grijpma DW, Feijen J. Triblock copolymers based on 1,3-trimethylene carbonate and lactide as biodegradable thermoplastic elastomers. Macromol Chem Phys 2004;205:867-75
  • Jeong SI, Kim BS, Kang SW, et al. In vivo biocompatibility and degradation behavior of elastic poly(L-lactide-co-e-caprolactone) scaffolds. Biomaterials 2004;25:5939-46
  • Odelius K, Plikk P, Albertsson AC. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester. Biomacromolecules 2005;6:2718-25
  • Andronova N, Albertsson AC. Resilient bioresorbable copolymers based on trimethylene carbonate, L-lactide, and 1,5-dioxepan-2-one. Biomacromolecules 2006;7(5):1489-95
  • Hassan MK, Mauritz KA, Storey RF, Wiggins JS. Biodegradable aliphatic thermoplastic polyurethane based on poly(epsilon-caprolactone) and L-lysine diisocyanate. J Polym Sci A Polym Chem 2006;44(9):2990
  • Saad B, Neuenschwander P, Uhlschmid GK, Suter UW. New versatile, elastomeric, degradable polymeric materials for medicine. Int J Biol Macromol 1999;25:293-301
  • Reddy TT, Hadano M, Takahara A. Controlled release of model drug from biodegradable segmented polyurethane ureas: morphological and structural features. Macromol Symposia 2006;242:241-9
  • Schindler A, Pitt CG. Biodegradable elastomeric polyesters. Polym Prepr Am Chem Soc Polym Chem 1982;23(2):111-2
  • Kelch S, Steuer S, Schmidt AM, Lendlein A. Shape-memory polymer networks from oligo [(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007;8(3):1018
  • Regula DW, Bregen MF, Cooper SL, et al. Ethicon, Inc., assignee. Radiation curable urethane-acrylate prepolymers and crosslinked polymers. US patent 5,674,921. 1997; 1997
  • Gale R, Chandrasekaran SK, Swanson D, Wright J. Use of osmotically active therapeutic agents in monolithic systems. J Membrane Sci 1980;7(3):319-31
  • Schirrer R, Thepin P, Torres G. Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds. J Mater Sci 1992;27:3424-34
  • Amsden B. A model for osmotic pressure driven release from cylindrical rubbery polymer matrices. J Control Rel 2003;93:249-58
  • Gu F, Younes HM, El-Kadi AOS, et al. Sustained interferon-gamma delivery from a photocrosslinked biodegradable elastomer. J Control Rel 2005;102(3):607-17
  • Gu F, Neufeld RJ, Amsden B. Osmotic driven release kinetics of bioactive therapeutic proteins from a biodegradable elastomer are linear, constant, similar and adjustable. Pharm Res 2006;23(4):782-9
  • Gu F, Neufeld R, Amsden B. Sustained release of bioactive therapeutic proteins from a biodegradable elastomeric device. J Control Rel 2007;117:80-9
  • Sendil D, Wise DL, Hasirci V. Assessment of biodegradable controlled release rod systems for pain relief applications. J Biomater Sci Polym Ed 2002;13(1):1-15
  • Montanari L, Cilurzo F, Selmin F, et al. Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects. J Control Rel 2003;90(3):281-90
  • Brode GL, Koleske JV. Lactone polymerization and polymer properties. J Macromol Sci Chem A 1972;6(6):1109-44
  • Perrin DE, English JP. Polyglycolide and polylactide. In: Handbook of Biodegradable Polymers. Domb AJ, Kost J, Wiseman DM, editors. Amsterdam: Harwood Academic Publishers; 1997. p. 3-27
  • Menei P, Daniel V, Monteromenei C, et al. Biodegradation and brain-tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials 1993;14(6):470-8
  • Ali SAM, Doherty PJ, Williams DF. Molecular biointeractions of biomedical polymers with extracellular exudate and inflammatory cells and their effects on the biocompatibility, in-vivo. Biomaterials 1994;15(10):779-85
  • Williams DF. Biodegradation of surgical polymers. J Mater Sci 1982;17(5):1233-46
  • Amsden BG, Tse MY, Turner ND, et al. In vivo degradation behavior of photo-cross-linked star-poly(epsilon-caprolactone-co-D,L-lactide) elastomers. Biomacromolecules 2006;7(1):365-72
  • Pitt CG, Jeffcoat AR, Zweidinger RA, Schindler A. Sustained drug delivery systems I: the permeability of poly(ϵ-caprolactone), poly(DL-lactic acid) and their copolymers. J Biomed Mater Res 1979;13:497-507
  • Buntner B, Nowak M, Bero M, et al. Controlled release of 17 beta-estradiol from d,l-lactide/epsilon-caprolactone copolymers. J Bioactive Compatible Polym 1996;11(2):110-21
  • Wada R, Hyon S-H, Nakamura T, Ikada Y. In vitro evaluation of sustained drug release from biodegradable elastomer. Pharm Res 1991;8(10):1292-6
  • Hirose K, Marui A, Arai Y, et al. Sustained-release vancomycin sheet may help to prevent prosthetic graft methicillin-resistant Staphylococcus aureus infection. J Vasc Surg 2006;44(2):377-82
  • Pitt CG, Gratzl MM, Kimmel GL, et al. Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(epsilon-caprolactone), and their copolymers in vivo. Biomaterials 1981;2:215-20
  • Lemmouchi Y, Schacht E, Kageruka P, et al. Biodegradable polyesters for controlled release of trypanocidal drugs: In vitro and in vivo studies. Biomaterials 1998;19(20):1827-37
  • Pitt CG. Poly- -caprolactone and its copolymers. In: Chasin M, Langer R, editors. Biodegradable Polymers as Drug Delivery Systems. New York: Marcel Dekker Inc.; 1990. p. 71-120
  • Dahiyat BI, Posadas EM, Hirosue S, et al. Degradable biomaterials with elastomeric characteristics and drug-carrier function. Reactive Polym 1995;25:101-9
  • Woo GLY, Yang ML, Yin HQ, et al. Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res 2002;59(1):35-45
  • Zhang JY, Doll BA, Beckman EJ, Hollinger JO. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. J Biomed Mater Res A 2003;67A(2):389-400
  • Guan JJ, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Rel 2007;120:70-8
  • Valenta J. Identification of mechanical properties of living tissues. Application of the theory of catastrophes to the evolution of biosystems. In vitro demonstration of elastomeric drug-polymer wherein drug release is controlled by inflammatory response. In: Jaroslav V, editor. Clinical Aspects of Biomedicine. Amsterdam: Elsevier Science; 1993. p. 142-79
  • Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg 2003;37(2):472-80
  • Bos RRM, Rozema FR, Boering G, et al. Degradation of and tissue reaction to biodegradable poly(L-Lactide) for use as internal-fixation of fractures - a study in rats. Biomaterials 1991;12(1):32-6
  • Jurgens C, Ryefger-Kricheldorf H, Kreiser-Saunders I, et al. Use of lactide polymers for adhesion prophylaxis. US patent US5854381. 1998 Dec. 29; 1998
  • Matsuda T, Mizutani M, Arnold S, et al. Ethicon, Inc., assignee. Coumarin endcapped absorbable polymers. US patent 7,144,976; 2006
  • Monson KL, Goldsmith W, Barbaro NM, Manley GT. Axial mechanical properties of fresh human cerebral blood vessels. J Biomech Eng Trans ASME 2003;125(2):288-94
  • Cleland JL, Duenas ET, Park A, et al. Development of poly-(D,L-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Rel 2001;72(1-3):13
  • Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001;49(3):522
  • Epstein SE, Fuchs S, Zhou YF, et al. Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 2001;49(3):532
  • Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9(6):694
  • Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res 2005;65(3):649
  • Langer RS, Lendlein A, Schmidt A, et al. Massachusetts Institute of Technology (Cambridge, MA), assignee. Biodegradable shape memory polymers. US patent 6,160,084. 2000 December 12; 2000
  • Lendlein A, Schmidt AM, Langer R. AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 2001;98(3):842
  • Choi NY, Lendlein A. Degradable shape-memory polymer networks from oligo[(L-lactide)-ran-glycolide]dimethacrylates. Soft Matter 2007;3(7):901
  • Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002;296(5573):1673-6
  • Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res 2002;61(3):493-503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.