481
Views
38
CrossRef citations to date
0
Altmetric
Review

Application of drug delivery system to boron neutron capture therapy for cancer

, MD PhD,, , , , &
Pages 427-443 | Published online: 21 Apr 2008

Bibliography

  • Hatanaka H, Nakagawa Y. Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy. Int J Radiat Oncol Biol Phys 1994;28:1061-66
  • Nakagawa Y, Hatanaka H. Boron neutron capture therapy – clinical brain tumor study. J Neurooncol 1997;33:105-15
  • Mishima Y. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B compound. Lancet 1989;39:325-33
  • Nakagawa Y, Pooh K, Kobayashi T, et al. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams. J Neuro Oncol 2003;62:87-7
  • Kato I, Ono K, Sakurai Y, et al. Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 2004;61:829-33
  • Miyatake S, Kawabata S, Kajimoto Y, et al. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings neuroimages. J Neurosurg 2005;103:1000-9
  • Nakagawa Y. Boron neutron capture therapy in Japan – from the past to the future. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. President's Address of ICNCT-12, Published by International Society for Neutron Capture Therapy; 2006
  • Kageji T, Mizobuchi Y, Nagahiro S, et al. Comparison of BNCT radiation dose between BSH-based intra-operative BNCT and BSH, BPA-based non-operative BNCT. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 62-3
  • Ono K, Masunaga S, Kinashi Y, et al. Neutron irradiation under continuous BPA injection for solving the problem of heterogeneous distribution of BPA. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in Neutron Capture Therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 27-30
  • Imahori Y, Ueda S, Ohmori Y, et al. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part I. Clin Cancer Res 1998;4:1825-32
  • Birgit Romberg, Wim E, Hennink, Gert Storm. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008;25(1): 55-71
  • Laura J. Waters and Evangelos V. Pavlakis: In vitro controlled drug release from loaded microspheres – dose regulation through formulation. J Pharm Pharmaceut Sci 2007;10(4):464-72
  • Mian Li, Michael J Hanford, Jin-Woo Kim, Tonya L Peeples. Amyloglucosidase enzymatic reactivity inside lipid vesicles. J Biol Eng 2007;1:4, 1-9
  • Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon induced by administration of PEGylated liposome. Yakugaku Zasshi 2008;128(2):233-43
  • Adam M, Sonabend, Ilya V, Ulasov, Maciej S. Lesniak: gene therapy trials for the treatment of high-grade gliomas. Gene Ther Mol Biol 2007;11(A):79-92
  • Kawakami S, Hashida M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 2007;22(3):142-51
  • Butowski N, Chang SM. Small molecule and monoclonal antibody therapies in neurooncology. Cancer Control 2005;12(2):116-24
  • Barth RF, Alam F, Soloway AH, et al. Boronated monoclonal antibody 17-1A for potential neutron capture therapy of colorectal cancer. Hybridoma 1986;5(Suppl 1):S43-50
  • Takahashi T, Fujii Y, Fujii G, Nariuchi H. Preliminary study for application of anti-alpha-fetoprotein monoclonal antibody to boron-neutron capture therapy. Jpn J Exp Med 1987;57(2):83-91
  • Yanagië H, Fujii Y, Sekiguchi M, et al. A targeting model of boron neutron-capture therapy to hepatoma cells in vivo with a boronated anti-(alpha-fetoprotein) monoclonal antibody. J Cancer Res Clin Oncol 1994;120(11):636-40
  • Tamat SR, Moore DE, Patwardhan A, Hersey P. Boronated monoclonal antibody 225.28S for potential use in neutron capture therapy of malignant melanoma. Pigment Cell Res 1989;2(4):278-80
  • Ranadive GN, Rosenzweig HS, Epperly MW, Bloomer WD. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy. Nucl Med Biol 1993;20(1):1-6
  • Liu L, Barth RF, Adams DM, et al. Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J Hematother 1995;4(5):477-83
  • Barth RF, Wu G, Yang W, et al. Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent. Appl Radiat Isot 2004;61(5):899-903
  • Yanagië H, Fujii Y, Takahashi T, et al. Boron neutron capture therapy using 10B entrapped anti-CEA immunoliposome (Article in Japanese). Hum Cell 1989;2(3):290-6
  • Yanagië H, Tomita T, Kobayashi H, et al. Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model. Br J Cancer 1991;63(4):522-6
  • Yanagië H, Tomita T, Kobayashi H, et al. Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer 1997;75(5):660-5
  • Yanagië H, Kobayashi H, Takeda Y, et al. Inhibition of growth of human breast cancer cells in culture by neutron capture using 10B-containing liposomes. Biomed Pharmacother 2002;56:93-9
  • Shelly K, Feakes DA, Hawthorne MF, et al. Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci USA 1992;89(19):9039-43
  • Feakes DA, Shelly K, Knobler CB, Hawthorne MF. Na3[B20H17NH3]: synthesis and liposomal delivery to murine tumors. Proc Natl Acad Sci USA 1994;91(8):3029-33
  • Feakes DA, Shelly K, Hawthorne MF. Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes (boron neutron capture therapy/borane/vesicle). Proc Natl Acad Sci USA 1995;92:1367-70
  • Feakes DA, Waller RC, Hathaway DK, Morton VS. Synthesis and in vivo murine evaluation of Na4[1-(1*-B10H9)-6-SHB10H8] as a potential agent for boron neutron capture therapy. Proc Natl Acad Sci USA 1999;96:6406-10
  • Hawthorne MF, Shelly K. Liposomes as drug delivery vehicles for boron agents. J Neurooncol 1997;33(1-2):53-8
  • Moraes AM, Santana MH, Carbonell RG. Preparation and characterization of liposomal systems entrapping the boronated compound o-carboranylpropylamine. J Microencapsul 1999;16(5):647-64
  • Mehta SC, Lai JC, Lu DR. Liposomal formulations containing sodium mercaptoundecahydrododecaborate (BSH) for boron neutron capture therapy. J Microencapsul 1996;13(3):269-79
  • Yanagië H, Maruyama K, Takizawa T, et al. Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model. Biomed Pharmacother 2006;60(1):43-50 [Epub 2005 Sep 21]
  • Ishida O, Maruyama K, Tanahashi H, et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 2001;18(7):1042-8
  • Maruyama K, Ishida O, Kasaoka S, et al. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Rel 2004;98(2):195-207
  • Ogura K, Yanagië H, Eriguchi M, et al. Neutron capture autoradiographic study of the biodistribution of 10B in tumor-bearing mice. Appl Radiat Isot 2004;61(4):585-90
  • Yanagië H, Ogura K, Takagi K, et al. Accumulation of boron compounds to tumor with polyethylene-glycol binding liposome by using neutron capture autoradiography. Appl Radiat Isot 2004;61(4):639-46
  • Doi A, Miyatake S, Iida K, et al. Intracellular targeting of mercaptoundecahydro-dodecaborate (BSH) to malignant glioma by transferring-PEG liposomes for boron neutron capture therapy (BNCT). In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 203-6
  • Pan XQ, Wang H, Shukla S, et al. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem 2002;13(3):435-42
  • Pan XQ, Wang H, Shukla S, et al. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem 2002;13(3):435-42.
  • Pan XQ, Wang H, Lee RJ. Boron delivery to a murine lung carcinoma using folate receptor-targeted liposomes. Anticancer Res 2002;22(3):1629-33
  • Sudimack JJ, Adams D, Rotaru J, et al. Folate receptor-mediated liposomal delivery of a lipophilic boron agent to tumor cells in vitro for neutron capture therapy. Pharm Res 2002;19(10):1502-8
  • Stephenson SM, Yang W, Stevens PJ, et al. Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res 2003;23(4):3341-5
  • Thirumamagal BT, Zhao XB, Bandyopadhyaya AK, et al. Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Bioconjug Chem 2006;17(5):1141-50
  • Kullberg EB, Nestor M, Gedda L. Tumor-cell targeted epidermal growth factor liposomes loaded with boronated acridine: uptake and processing. Pharm Res 2003;20(2):229-36
  • Kullberg EB, Carlsson J, Edwards K, et al. Introductory experiments on ligand liposomes as delivery agents for boron neutron capture therapy. Int J Oncol 2003;23(2):461-7
  • Kullberg EB, Wei Q, Capala J, et al. EGF-receptor targeted liposomes with boronated acridine: growth inhibition of cultured glioma cells after neutron irradiation. Int J Radiat Biol 2005;81(8):621-9
  • Carlsson J, Kullberg EB, Capala J, et al. Ligand liposomes and boron neutron capture therapy. J Neurooncol 2003;62(1-2):47-59
  • Pan X, Wu G, Yang W, et al. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 2007;18(1):101-8
  • Wei Q, Kullberg EB, Gedda L. Trastuzumab-conjugated boron-containing liposomes for tumor-cell targeting; development and cellular studies. Int J Oncol 2003;23(4):1159-65
  • Peacock GF, Ji B, Wang CK, Lu DR. Cell culture studies of a carborane cholesteryl ester with conventional and PEG liposomes. Drug Deliv 2003;10(1):29-34
  • Rossi S, Schinazi RF, Martini G. ESR as a valuable tool for the investigation of the dynamics of EPC and EPC/cholesterol liposomes containing a carboranyl-nucleoside intended for BNCT. Biochim Biophys Acta 2005;1712(1):81-91
  • Nakamura H, MiyajimaY, Takei T, et al. Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. Chem Commun (Camb) 2004;17:1910-11
  • Miyajima Y, Nakamura H, Kuwata Y, et al. Transferrin-loaded nido-carborane liposomes: tumor-targeting boron delivery system for neutron capture therapy. Bioconjug Chem 2006;17(5):1314-20
  • Nakamura H, Miyajima Y, Kuwata Y, et al. Transferrin-loaded nido-Carborane liposomes: synthesis and intracellular targeting to solid tumors for boron neutron capture therapy. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 195-8
  • Justus E, Awad D, Hohnholt M, et al. Synthesis, liposomal preparation, and in vitro toxicity of two novel dodecaborate cluster lipids for boron neutron capture therapy. Bioconjug Chem 2007;18(4):1287-93 [Epub 2007 Jun 15]
  • Martini S, Ristori S, Pucci A, et al. Boronphenylalanine insertion in cationic liposomes for boron neutron capture therapy. Biophys Chem 2004;111(1):27-34
  • Morandi S, Ristori S, Berti D, et al. Association of sugar-based carboranes with cationic liposomes: an electron spin resonance and light scattering study. Biochim Biophys Acta 2004;1664(1):53-63
  • Ristori S, Oberdisse J, Grillo YI, et al. Structural characterization of cationic liposomes loaded with sugar-based carboranes. Biophys J 2005;88:535-47
  • Yanagië H, Ogura K, Matsumoto T, et al. Neutron capture autoradiographic determination of 10B distributions and concentrations in biological samples for boron neutron capture therapy. Nucl Instr Method A 1999;424(1):122-8
  • Yanagië H, Ogura K, Nonaka Y, et al. Alpha-autoradiographic determination of 10B concentrations in cancer bearing mice for boron neutron-capture therapy. In: Hawthorne MF, et al. editors, Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York; 2001. p. 945-51
  • Nakai K, Yamamoto T, Matsumura A, et al. Application of HVJ envelope system to boron neutron capture therapy (BNCT). In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 207-10
  • Shukla S, Wu G, Chatterjee M, et al. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug Chem 2003;14(1):158-67
  • Yanagië H, Sato T, Nishi H, et al. Boron delivery to tumors mediated by polyethylene glycol-binding BSA. Proceeding of 7th international symposium on neutron capture therapy for cancer. In: Larsson B, et al., editors, Advances in neutron capture therapy. Elsevier Science; 1997. p. 403-7
  • Kanematsu T, Inokuchi K, Sugimachi K, et al. Selective sffects of lipiodolized antitumor agents. J Surg Oncol 1984;25:218-26
  • Kanematsu T, Furuta T, Takenaka K, et al. A 5-year experience of lipiolization: selective regional chemotherapy for 200 patients with hepatocellular carcinoma. Hepatology 1989;10:98-102
  • Katagiri Y, Mabuchi K, Itakura T, et al. Adriamycin-lipiodol suspension for i.a. chemotherapy of hepatocellular carcinoma. Cancer Chemother Pharmacol 1989;23:238-42
  • Suzuki M, Masunaga S, Kinashi Y, et al. Intra-arterial administration of sodium borocaptate (BSH)/lipiodol emulsion delivers B-10 to liver tumors highly selectively for boron neutron capture therapy: experimental studies in the rat liver model. Int J Radiat Oncol Biol Phys 2004;59(1):260-6
  • Suzuki M, Nagata K, Masunaga S, et al. Biodistribution of 10B in a rat liver tumor model following intra-arterial administration of sodium borocaptate (BSH)/degradable starch microspheres (DSM) emulsion. Appl Radiat Isot 2004;61(5):933-7
  • Higashi S, Shimizu M, Setoguchi T. Preparation of new lipiodol-emulsion containing water soluble anticancer agent by membrane emulsification technique (In Japanese with English abstract). Drug Deliv Syst 1993;8:59-61
  • Nakashima T, Shimizu M, Kukizaki M. Membrane emulsification by microporous glass. Inorgan Membr 1991;ICIM2-92:511-6
  • Higashi S, Shimizu M, Nakashima T, et al. Arterial-injection chemotherapy for hepatocellular carcinoma using monodispersed poppy-seed oil microdroplets containing fine aqueous vesicles of epirubicin. Cancer 1995;75:1245-54
  • Nakashima T, Shimizu M, Kukizaki M. Development of membrane emulsification and its applications to drug delivery systems (In Japanese with English abstract). Maku (Membrane) 1999;24:278-89
  • Yanagië H, Higashi S, Ikushima I, et al. Selective enhancement of boron accumulation with boron-entrapped WOW emulsion in VX-2 rabbit hepatic cancer model for BNCT. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 211-4
  • Chou FI, Chung HP, Wen HW, et al. Synthesis of PBAD-lipiodol nanoparticles for combination treatment with boric acid in boron neutron capture therapy for hepatoma in vitro. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 153-6
  • Kahl SB, Ozawa T, Afzal J, et al. BOPP revisited: a study on the toxicity, biodistribution and convection enhanced delivery of BOPP in the 9L intracerebral rat glioma model. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 199-202
  • Matsumura A, Shibata Y, Yamamoto T. A new boronated porphyrin (STA-BX909) for neutron capture therapy: an in vitro survival assay and in vivo tissue uptake study. Cancer Lett 1999;141:203-9
  • Vincente MGH, Easson M. Syntheses of phosphonate-and amine-substituted carboranylporphyrins for boron neutron capture therapy of tumors. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 231-3
  • Kawabata S, Barth RF, Yang W, et al. Evaluation of carboranylporphyrins as boron delivery agents for neutron capture therapy. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 123-6
  • Azab AK, Srebnik M, Doviner V, Rubinstein A. Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers. J Control Rel 2005;106(1-2):14-25
  • Wu G, Barth RF, Yang W, et al. Boron containing macromolecules and nanovehicles as delivery agents for neutron capture therapy. Anticancer Agents Med Chem 2006;6(2):167-84
  • Wu G, Barth RF, Yang W, et al. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem 2004;15(1):185-94
  • Wu G, Yang W, Barth RF, et al. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res 2007;13(4):1260-8
  • Yang W, Barth RF, Wu G, et al. Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res 2006;12(12):3792-802
  • Nabeta C, Ichikawa H, Fukumori Y. Biodistribution of nanoparticles of hydrophobic gadopentetic-acid derivative prepared with a planetary ball mill for neutron-capture therapy of cancer. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 221-3
  • Fukumori Y, Ichikawa H, Nakatani Y, et al. Gadolinium-loaded chitosan nanoparticles for cancer neutron-capture therapy: pharmaceutical characteristics and in vitro antitumor effect. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 224-7
  • Yokoyama K, Miyatake S, Kajimoto Y, et al. Analysis of boron distribution in vivo for boron neutron capture therapy using two different boron compounds by secondary ion mass spectroscopy. Radiat Res 2007;167(1):102-9
  • Ono K, Masunaga SI, Kinashi Y, et al. Radiobiological evidence suggesting heterogeneous microdistribution of boron compounds in tumors: its relation to quiescent cell population and tumor cure in neutron capture therapy. Int J Radiat Oncol Biol Phys 1996;34(5):1081-6
  • Ferro VA, Morris JH, Stimson WH. A novel method for boronating antibodies without loss of immunoreactivity, for use in neutron capture therapy. Drug Des Discov 1995;13(1):13-25
  • Bench BJ, Johnson R, Hamilton C, et al. Avidin self-associates with boric acid gel suspensions: an affinity boron carrier that might be developed for boron neutron-capture therapy. J Colloid Interface Sci 2004;270(2):315-20
  • Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 2005;11(11):3987-4002
  • Yang W, Barth RF, Wu G, et al. Neutron capture therapy of epidermal growth factor receptor (EGFR)vIII positive gliomas using boronated monoclonal antibody L8A4. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 115-8
  • Voge A, Hoffmann S, Gabel D. Synthesis of furan-based DNA binders and their interaction with DNA. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p. 228-30
  • Yanagië H, Mitsui S, Ogata A, et al. Production of polyoxisoboronate as novel boron compound. In: Nakagawa Y, Kobayashi T, Fukuda H, editors, Advances in neutron capture therapy 2006. Published by International Society for Neutron Capture Therapy; 2006. p 251-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.