731
Views
92
CrossRef citations to date
0
Altmetric
Review

Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles

&
Pages 499-515 | Published online: 20 May 2008

Bibliography

  • Socinski M. Update on nanoparticle albumin-bound paclitaxel. Clin Adv Hematol Oncol 2006;4:745-6
  • Mehnert W, Mader K. Solid lipid nanoparticles Production, characterization and applications. Adv Drug Deliv Rev 2001;47:165-96
  • Muller BG, Leuenberger H, Kissel T. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm Res 1996;13:32-7
  • Raghuvanshi RS, Goyal S, Singh O, Panda AK. Stabilization of dichloromethane-induced protein denaturation during microencapsulation. Pharm Dev Technol 1998;3:269-76
  • Sturesson C, Carlfors J. Incorporation of protein in PLG-microspheres with retention of bioactivity. J Control Rel 2000;67:171-8
  • Chawla JS, Amiji MM. Biodegradable poly(ϵ-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 2002;249:127-38
  • Nehilla BJ, Bergkvist M, Popat KC, Desai TA. Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int J Pharm 2007;348:107-14
  • Sussman EM, Clarke MB Jr, Shastri VP. Single-step process to produce surface-functionalized polymeric nanoparticles. Langmuir 2007;23:12275-9
  • Zambaux MF, Bonneaux F, Gref R, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Rel 1998;50:31-40
  • Song X, Zhao Y, Wu W, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 2008;350:320-9
  • Tewes F, Munnier E, Antoon B, et al. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur J Pharm Biopharm 2007;66:488-92
  • Li YP, Pei YY, Zhang XY, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Rel 2001;71:203-11
  • Garinot M, Fiévez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Rel 2007;120:195-204
  • Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45-53
  • Chung YI, Ahn KM, Jeon SH, et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Rel 2007;121:91-9
  • Isobe M, Yamazaki Y, Mori M, et al. The role of recombinant human bone morphogenetic protein-2 in PLGA capsules at an extraskeletal site of the rat. J Biomed Mater Res 1999;45:36-41
  • Meinel L, Zoidis E, Zapf J, et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 2003;33:660-72
  • Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 2000;194:91-102
  • Lin W, Coombes AGA, Davies MC, et al. Preparation of sub-100 nm human serum albumin nanoparticles using a pH-coacervation method. J Drug Target 1993;1:237-43
  • Langer K, Balthasar S, Vogel V, et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 2003;257:169-80
  • Ko S, Gunasekaran S. Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles. J Microencapsul 2006;23:887-98.:
  • Lin W, Garnett MC, Schacht E, et al. Preparation and in vitro characterization of HSA-mPEG nanoparticles. Int J Pharm 1999;189:161-70
  • Segura S, Gamazo C, Irache JM, Espuelas S. Gamma interferon loaded onto albumin nanoparticles: in vitro and in vivo activities against Brucella abortus. Antimicrob Agents Chemother 2007;51:1310-4
  • Zhang S, Wang G, Lin X, et al. Polyethylenimine-coated albumin nanopartices for BMP-2 delivery. Biotechnol Prog 2007; accepted
  • Merodio M, Arnedo A, Renedo MJ, Irache JM. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 2001;12:251-9
  • Segura S, Espuelas S, Renedo MaJs, Irache JM. Potential of albumin nanoparticles as carriers for interferon-gamma. Drug Dev Ind Pharm 2005;31:271-80
  • Leo E, Vandelli MA, Cameroni R, Forni F. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm 1997;155:75-82
  • Willmott N, Cummings J, Florence AT. in vitro release of adriamycin from drug-loaded albumin and haemoglobin microspheres. J Microencapsul 1985;2:293-304
  • Dreis S, Rothweiler F, Michaelis M, et al. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 2007;341:207-14
  • Arnedo A, Irache JM, Merodio M, Espuelas Millan MS. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. J Control Rel 2004;94:217-27
  • Chen CQ, Lin W, Coombes AGA, et al. Preparation of human serum albumin microspheres by a novel acetone-heat denaturation method. J Microencapsul 1994;11:395-407
  • Lin W, Coombes AGA, Garnett MC, et al. Preparation of sterically stabilized human serum albumin nanospheres using a novel dextranox-MPEG crosslinking agent. Pharm Res 1994;11:1588-92
  • Wang Y, Gao JY, Dubin PL. Protein separation via polyelectrolyte coacervation: selectivity and efficiency. Biotechnol Prog 1996;12:356-62
  • Farrell LL, Pepin J, Kucharski C, et al. A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). Eur J Pharm Biopharm 2007;65:388-97
  • Nisha CK, Manorama SV, Ganguli M, et al. Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: a complete biophysical characterization. Langmuir 2004;20:2386-96
  • Dautzenberg H, Zintchenko A, Konak C, et al. Polycationic graft copolymers as carriers for oligonucleotide delivery: complexes of oligonucleotides with polycationic graft copolymers. Langmuir 2001;17:3096-102
  • Serefoglou E, Oberdisse J, Staikos G. Characterization of the soluble nanoparticles formed through coulombic interaction of bovine serum albumin with anionic graft copolymers at low pH. Biomacromolecules 2007;8:1195-9
  • Matsudo T, Ogawa K, Kokufuta E. Complex formation of protein with different water-soluble synthetic polymers. Biomacromolecules 2003;4:1794-9
  • Rhaese S, von Briesen H, Rubsamen-Waigmann H, et al. Human serum albumin- polyethylenimine nanoparticles for gene delivery. J Control Rel 2003;92:199-208
  • Vogel V, Lochmann D, Weyermann J, et al. Oligonucleotide-protamine-albumin nanoparticles: preparation, physical properties, and intracellular distribution. J Control Release 2005;103:99-111
  • Balabushevitch NG, Sukhorukov GB, Moroz NA, et al. Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: factors regulating the protein release. Biotechnol Bioeng 2001;76:207-13
  • Fan YF, Wang YN, Fan YG, Ma JB. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm 2006;324:158-67
  • Amidi M, Romeijn SG, Borchard G, et al. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006;111:107-16
  • Xu Y, Du Y, Huang R, Gao L. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials 2003;24:5015-22
  • Malafaya PB, Silva GA, Baran ET, Reis RL. Drug delivery therapies I: general trends and its importance on bone tissue engineering applications. Curr Opin Solid State Mater Sci 2002;6:283-95
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci 2007;32:669-97
  • Stolnik S, Dunn SE, Garnett MC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly (ethylene glycol) copolymers. Pharm Res 1994;11:1800-8
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3
  • Townsend SA, Evrony GD, Gu FX, et al. Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials 2007;28:5176-84
  • Gryparis EC, Mattheolabakis G, Bikiaris D, Avgoustakis K. Effect of conditions of preparation on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin. Drug Deliv 2007;14:371-80
  • Gref R, Luck M, Quellec P, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000;18:301-13
  • Bergstrom K, Osterberg E, Holmberg K, et al. Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection. J Biomater Sci Polym Ed 1994;6:123-32
  • Choi SW, Kim JH. Design of surface-modified poly(D,L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release 2007;122:24-30
  • Kenausis GL, Voros J, Elbert DL, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B 2000;104:3298-309
  • Huang NP, Michel R, Voros J, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 2001;17:489-98
  • VandeVondele S, Voros J, Hubbell JA. RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng 2003;82:784-90
  • Faraasen S, Voros J, Csucs G, et al. Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharm Res 2003;20:237-46
  • Lin W, Garnett MC, Davies MC, et al. Preparation of surface-modified albumin nanospheres. Biomaterials 1997;18:559-65
  • Moghimi SM, Hedeman H, Muir IS, et al. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta 1993;1157:233-40
  • Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res 1994;11:402-6
  • Porter CJH, Moghimi SM, Illum L, Davis SS. The polyoxyethylene/polyoxypropylene block co-polymer Poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett 1992;305:62-6
  • Hirabayashi H, Fujisaki J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin Pharmacokinet 2003;42:1319-30
  • Wang D, Miller S, Sima M, et al. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjugate Chem 2003;14:853-9
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318
  • van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 2002;12:81-94
  • Li P, Tan Z, Zhu Y, et al. Targeting study of gelatin adsorbed clodronate in reticuloendothelial system and its potential application in immune thrombocytopenic purpura of rat model. J Control Release 2006;114:202-8
  • Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 1998;46:255-63
  • Bertholon I, Vauthier C, Labarre D. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 2006;23:1313-23
  • Fang C, Shi B, Pei Y-Y, et al. in vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 2006;27:27-36
  • Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 2006;22:8178-85
  • Zambaux MF, Bonneaux F, Gref R, et al. Protein C-loaded monomethoxypoly (ethylene oxide)-poly(lactic acid) nanoparticles. Int J Pharm 2001;212:1-9
  • Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Rel 2007;119:77-85
  • Zambaux MF, Bonneaux F, Gref R, et al. Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Rel 1999;60:179-88
  • Sun B, Ranganathan B, Feng SS. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 2008;29:475-86
  • Wartlick H, Spankuch-Schmitt B, Strebhardt K, et al. Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. J Control Rel 2004;96:483-95
  • Kreuter J, Hekmatara T, Dreis S, et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007;118:54-8
  • Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006;317:1246-53
  • Steinhauser I, Spankuch B, Strebhardt K, Langer K. Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 2006;27:4975-83
  • Wartlick H, Michaelis K, Balthasar S, et al. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 2004;12:461-71
  • Nobs L, Buchegger F, Gurny R, Allemann E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjugate Chem 2006;17:139-45
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007;28:869-76
  • Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006;103:6315-20
  • Zhang S, Gangal G. ‘Magic bullets’ for bone diseases: progress in rational design of bone-seeking medicinal agents. Chem Soc Rev 2007;36:507-31
  • Gittens SA, Bansal G, Zernicke RF, Uludag H. Designing proteins for bone targeting. Adv Drug Deliv Rev 2005;57:1011-36
  • Hengst V, Oussoren C, Kissel T, Storm G. Bone targeting potential of bisphosphonate-targeted liposomes: preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm 2007;331:224-7
  • Zhang S, Wright JEI, Uludag H, Ozber N. The interaction of cationic polymers and their bisphosphonate derivatives with hydroxyapatite. Macromol Biosci 2007;7:656-70
  • Lochmann D, Vogel V, Weyermann J, et al. Physicochemical characterization of protamine-phosphorothioate nanoparticles. J Microencapsul 2004;21:625-41
  • Duclairoir C, Orecchioni A-M, Depraetere P, et al. Evaluation of gliadins nanoparticles as drug delivery systems: a study of three different drugs. Int J Pharm 2003;253:133-44
  • Irache JM, Bergougnoux L, Ezpeleta I, et al. Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int J Pharm 1995;126:103-9
  • Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release 1998;53:137-43
  • Reddy LH, Sharma RK, Murthy RSR. Enhanced tumour uptake of doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles in mice bearing Dalton's lymphoma tumour. J Drug Target 2004;12:443-51
  • Peracchia MT, Fattal E, Desmaele D, et al. Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Rel 1999;60:121-8
  • Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007;28:2137-46
  • Yuan H, Huang LF, Du YZ, et al. Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system. Colloids Surf B Biointerfaces 2008;61:132-7
  • Jenning V, Schafer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Rel 2000;66:115-26
  • Cheng WP, Gray AI, Tetley L, et al. Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 2006;7:1509-20
  • Chen J, Tian B, Yin X, et al. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. J Biotechnol 2007;130:107-13
  • Lemarchand C, Gref R, Lesieur S, et al. Physico-chemical characterization of polysaccharide-coated nanoparticles. J Control Rel 2005;108:97-111
  • Rodrigues JS, Santos-Magalhaes NS, Coelho LCBB, et al. Novel core(polyester)- shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins. J Control Rel 2003;92:103-12
  • Trimaille T, Pichot C, Elaissari A, et al. Poly(D,L-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym Sci 2003;281:1184-90
  • Gao H, Yang YW, Fan YG, Ma JB. Conjugates of poly(D,L-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems. J Control Rel 2006;112:301-11
  • Gao H, Wang YN, Fan YG, Ma JB. Conjugates of poly(D,L-lactide-co-glycolide) on amino cyclodextrins and their nanoparticles as protein delivery system. J Biomed Mater Res Part A 2007;80A:111-22
  • Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Rel 2007;118:38-53
  • Lu W, Zhang Y, Tan YZ, et al. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 2005;107:428-48
  • Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(e-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005;293:261-70
  • Akagi T, Kaneko T, Kida T, Akashi M. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid). J Biomater Sci Polym Ed 2006;17:875-92
  • Hirsjarvi S, Peltonen L, Hirvonen J. Layer-by-layer polyelectrolyte coating of low molecular weight poly(lactic acid) nanoparticles. Colloids Surf B Biointerfaces 2006;49:93-9
  • Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004;64:7668-72
  • Perez C, Sanchez A, Putnam D, et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Rel 2001;75:211-24
  • Kim IS, Lee SK, Park YM, et al. Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int J Pharm 2005;298:255-62
  • Trimaille T, Pichot C, Delair T. Surface functionalization of poly(D,L-lactic acid) nanoparticles with poly(ethylenimine) and plasmid DNA by the layer-by-layer approach. Colloids Surf A Physicochemical Engin Aspects 2003;221:39-48
  • Messai I, Munier S, Taman-Onal Y, et al. Elaboration of poly(ethyleneimine) coated poly(D,L,-lactic acid) particles. Effect of ionic strength on the surface properties and DNA binding capabilities. Colloids Surf B Biointerfaces 2003;32:293-305
  • Lee SH, Zhang Z, Feng SS. Nanoparticles of poly(lactide) – tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery. Biomaterials 2007;28:2041-50
  • Zhang Z, Feng SS. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials 2006;27:262-70
  • Song CX, Labhasetwar V, Murphy H, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Rel 1997;43:197-212
  • Cegnar M, Kos J, Kristl J. Cystatin incorporated in poly(lactide-co-glycolide) nanoparticles: development and fundamental studies on preservation of its activity. Eur J Pharm Sci 2004;22:357-64
  • Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 2002;233:51-9
  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996;13:1838-45
  • Astete CE, Kumar CS, Sabliov CM. Size control of poly(D,L-lactide-co-glycolide) and poly(D,L-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique. Colloids Surf A Physicochemical Engin Aspects 2007;299:209-16
  • Lboutounne H, Guillaume YC, Michel L, et al. Study and development of encapsulated forms of 4, 5, 8-trimethylpsoralen for topical drug delivery. Drug Dev Res 2004;61:86-94
  • Sholes PD, Coombes AGA, Illum L, et al. The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Rel 1993;25:145-53
  • Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004;25:2843-9
  • Zhang L, Hou S, Mao S, et al. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int J Pharm 2004;287:155-62
  • Rahimnejad M, Jahanshahi M, Najafpour GD. Production of biological nanoparticles from bovine serum albumin for drug delivery. African J Biotechnol 2006;5:1918-23
  • Arbos P, Campanero MA, Arangoa MA, Irache JM. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines. J Control Release 2004;96:55-65
  • Michaelis M, Langer K, Arnold S, et al. Pharmacological activity of DTPA linked to protein-based drug carrier systems. Biochem Biophys Res Commun 2004;323:1236-40
  • Brzoska M, Langer K, Coester C, et al. Incorporation of biodegradable nanoparticles into human airway epithelium cells – in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun 2004;318:562-70
  • Langer K, Coester C, Weber C, et al. Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. Eur J Pharm Biopharm 2000;49:303-7
  • Arnedo A, Espuelas S, Irache JM. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. Int J Pharm 2002;244:59-72
  • Huang M, Vitharana SN, Peek LJ, et al. Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules 2007;8:1607-14
  • Lin YH, Mi FL, Chen CT, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 2007;8:146-52
  • Prego C, Torres D, Fernandez-Megia E, et al. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Rel 2006;111:299-308
  • Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. in vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core-shell nanoparticles. Int J Pharm 2007;338:284-90
  • Mi FL, Wu YY, Chiu YL, et al. Synthesis of a novel glycoconjugated chitosan and preparation of its derived nanoparticles for targeting HepG2 Cells. Biomacromolecules 2007;8:892-8
  • Tan WB, Huang N, Zhang Y. Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. J Colloid Interface Sci 2007;310:464-70
  • Chen F, Zhang ZR, Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm 2007;336:166-73
  • Bodnar M, Hartmann JF, Borbely J. Synthesis and study of cross-linked chitosan-N-poly(ethylene glycol) nanoparticles. Biomacromolecules 2006;7:3030-6
  • Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Rel 2006;115:216-25
  • Cetin M, Aktas Y, Vural I, et al. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv 2007;14:525-9
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces 2007;59:24-34
  • Zhu S, Qian F, Zhang Y, et al. Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles. Eur Polym J 2007;43:2244-53
  • Zhao X, Yu SB, Wu FL, et al. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Rel 2006;112:223-8
  • Cafaggi S, Russo E, Stefani R, et al. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Rel 2007;121:110-23
  • Loretz B, Thaler M, Bernkop-Schnurch A. Role of sulfhydryl groups in transfection? A case study with chitosan-NAC nanoparticles. Bioconjugate Chem 2007;18:1028-35
  • Diebold Y, Jarrin M, Saez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007;28:1553-64
  • Bravo-Osuna I, Teutonico D, Arpicco S, et al. Characterization of chitosan thiolation and application to thiol quantification onto nanoparticle surface. Int J Pharm 2007;340:173-81
  • Krauland AH, Alonso MJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm 2007;340:134-42
  • Grenha A, Grainger CI, Dailey LA, et al. Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci 2007;31:73-84
  • Prego C, Fabre M, Torres D, Alonso M. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 2006;23:549-56
  • Zheng Y, Wu Y, Yang W, et al. Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles. J Pharm Sci 2007;95:181-91
  • Zhang H, Oh M, Allen C, Kumacheva E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 2004;5:2461-8
  • Chen L, Subirade M. Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 2005;26:6041-53
  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997;14:1431-6
  • Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces 2005;44:65-73
  • Sajeesh S, Sharma CP. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res Part B Appl Biomater 2006;76:298-305
  • Park K, Kim JH, Nam YS, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Rel 2007;122:305-14
  • Jintapattanakit A, Junyaprasert VB, Mao S, et al. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm 2007;342:240-9
  • Kim SH, Jeong JH, Chun KW, Park TG. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 2005;21:8852-7
  • Mo Y, Lim LY. Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Rel 2005;108:244-62
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with loperamide and rhodamine-123. J Control Rel 2007;122:1-9
  • Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Rel 2005;108:84-96
  • Zhang N, Chittasupho C, Duangrat C, et al. PLGA Nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 2008;19:145-52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.