319
Views
50
CrossRef citations to date
0
Altmetric
Review

Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering

, , , &
Pages 543-566 | Published online: 20 May 2008

Bibliography

  • Buckwalter JA, Mankin HJ. Instr. Course Lect., The American Academy of Orthopaedic Surgeons – Articular Cartilage. Part I: Tissue Design and Chondrocyte-Matrix Interactions. J Bone Joint Surg 1997;79(4):600-11
  • Buckwalter JA, Mankin HJ. Instr. Course Lect., The American Academy of Orthopaedic Surgeons – articular cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg 1997;79(4):612-32
  • Hunter W. Of the structure and diseases of articulating cartilages, by William Hunter, Surgeon. Philos Trans (1683 – 1775) 1742;42:514-21
  • Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002;10(6):432-63
  • Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage 1999;7(1):15-28
  • Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-6
  • Grande DA, Breitbart AS, Mason J, et al. Cartilage tissue engineering: current limitations and solutions. Clin Orthop 1999;367(Suppl):S176-85
  • Reddi AH. Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J Cell Biochem 1994;56(2):192-5
  • Johnstone B, Yoo JU. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin Orthop 1999;367(Suppl):S156-62
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed 2001;12(1):107-24
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21(24):2529-43
  • Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 2001;34(4-5):147
  • Hunziker EB, Quinn TM, Hauselmann H. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 2002;10(7):564-72
  • Hardingham T. Proteoglycans and glycosaminoglycans. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of bone and cartilage metabolism. London: Academic press; 1999. p. 71-82
  • Mow VC, Wang CC. Some bioengineering considerations for tissue engineering of articular cartilage. Clin Orthop 1999;367(Suppl):S204-23
  • Poole AR, Kojima T, Yasuda T, et al. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop 2001;391(Suppl):S26-33
  • Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg 1996;78(5):721-33
  • Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75(4):532-53
  • Jackson DW, Scheer MJ, Simon TM. Cartilage substitutes: overview of basic science and treatment options. J Am Acad Orthop Surg 2001;9(1):37-52
  • Buckwalter JA. Evaluating methods of restoring cartilaginous articular surfaces. Clin Orthop 1999;367(Suppl):S224-38
  • Hunziker EB. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clin Orthop 1999;367(Suppl):S135-46
  • Grande DA, Pitman MI, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 1989;7(2):208-18
  • Brittberg M. Autologous chondrocyte transplantation. Clin Orthop 1999;367(Suppl):S147-55
  • Peterson L, Brittberg M, Kiviranta I, et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 2002;30(1):2-12
  • Woodfield TB, Bezemer JM, Pieper JS, et al. Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr 2002;12(3):209-36
  • Coutts RD, Healey RM, Ostrander R, et al. Matrices for cartilage repair. Clin Orthop 2001;391(Suppl):S271-9
  • Kim SS, Utsunomiya H, Koski JA, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 1998;228(1):8-13
  • Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliv Rev 2004;56(11):1635-47
  • Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 2002;23(24):4739-51
  • Malda J, Woodfield TB, van der Vloodt F, et al. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 2005;26(1):63-72
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47-55
  • Boontheekul T, Mooney DJ. Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 2003;14(5):559
  • Lee JE, Kim KE, Kwon IC, et al. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 2004;25(18):4163-73
  • Mierisch CM, Cohen SB, Jordan LC, et al. Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy 2002;18(8):892-900
  • Nof M, Shea LD. Drug-releasing scaffolds fabricated from drug-loaded microspheres. J Biomed Mater Res 2002;59(2):349-56
  • Whang K, Goldstick TK, Healy KE. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 2000;21(24):2545-51
  • Park H, Temenoff JS, Holland TA, et al. Delivery of TGF-[beta]1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005;26(34):7095
  • Sohier J, Haan RE, de Groot K, Bezemer JM. A novel method to obtain protein release from porous polymer scaffolds: emulsion coating. J Control Release 2003;87(1-3):57-68
  • Sohier J, Hamann D, Koenders M, et al. Tailored release of TGF-[beta]1 from porous scaffolds for cartilage tissue engineering. Int J Pharm 2007;332(1-2):80-89
  • Hile DD, Amirpour ML, Akgerman A, Pishko MV. Active growth factor delivery from poly(D,L-lactide-co-glycolide) foams prepared in supercritical CO(2). J Control Release 2000;66(2-3):177-85
  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999;99(11):3181-98
  • Jang JH, Shea LD. Controllable delivery of non-viral DNA from porous scaffolds. J Control Release 2003;86(1):157-68
  • Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19(11):1029-34
  • Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005;436(7050):568-72
  • Lo H, Kadiyala S, Guggino SE, Leong KW. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J Biomed Mater Res 1996;30(4):475-84
  • Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2000;21(24):2521-7
  • Anderson JM, Langone JJ. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Release 1999;57(2):107-13
  • Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000;17(5):497-504
  • Chu CR, Dounchis JS, Yoshioka M, et al. Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop 1997;(340):220-9
  • Freed LE, Marquis JC, Nohria A, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27(1):11-23
  • Sarazin P, Roy X, Favis BD. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials 2004;25(28):5965-78
  • Bostman O, Hirvensalo E, Vainionpaa S, et al. Ankle fractures treated using biodegradable internal fixation. Clin Orthop 1989;(238):195-203
  • Fu K, Pack DW, Klibanov AM, Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 2000;17(1):100-6
  • Uchida T, Yagi A, Oda Y, et al. Instability of bovine insulin in poly(lactide-co-glycolide) (PLGA) microspheres. Chem Pharm Bull 1996;44(1):235-6
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 2000;17(10):1159-67
  • Honda M, Yada T, Ueda M, Kimata K. Cartilage formation by cultured chondrocytes in a new scaffold made of poly(L-lactide-epsilon-caprolactone) sponge. J Oral Maxillofac Surg 2000;58(7):767-75
  • Wang PY. Compressed poly(vinyl alcohol)-polycaprolactone admixture as a model to evaluate erodible implants for sustained drug delivery. J Biomed Mater Res 1989;23(1):91-104
  • Hutmacher DW, Schantz T, Zein I, et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55(2):203-16
  • Choi SH, Park TG. Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J Biomater Sci Polym Ed 2002;13(10):1163-73
  • Bezemer JM, Grijpma DW, Dijkstra PJ, et al. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization. J Control Release 1999;62(3):393-405
  • Olde Riekerink MB, Claase MB, Engbers GH, et al. Gas plasma etching of PEO/PBT segmented block copolymer films. J Biomed Mater Res part A 2003;65(4):417-28
  • van Dijkhuizen-Radersma R, Peters FL, Stienstra NA, et al. Control of vitamin B12 release from poly(ethylene glycol)/poly(butylene terephthalate) multiblock copolymers. Biomaterials 2002;23(6):1527-36
  • Deschamps AA, Claase MB, Sleijster WJ, et al. Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. J Control Release 2002;78(1-3):175-86
  • Mahmood TA, de Jong R, Riesle J, et al. van Blitterswijk, Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Exp Cell Res 2004;301(2):179-88
  • Woodfield TB, Malda J, de Wijn J, et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004;25(18):4149-61
  • Moroni L, de Wijn JR, van Blitterswijk CA. Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: Influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties. J Biomed Mater Res part A 2005;75(4):957-65
  • Bezemer JM, Radersma R, Grijpma DW, et al. Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylene terephthalate) matrices. J Control Release 2000;64(1-3):179-92
  • van Blitterswijk CA, van den Brink J, Leenders H, Bakker D. The effect of PEO ratio on degradation, calcification and bone bonding of PEO/PBT copolymer (PolyActive). Cell Mater 1993;3:23-6
  • Bakker D, van Blitterswijk CA, Hesseling SC, Grote JJ. Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. Biomaterials 1988;9(1):14-23
  • Beumer GJ, van Blitterswijk CA, Ponec M. Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study. Biomaterials 1994;15(7):551-9
  • Beumer GJ, van Blitterswijk CA, Ponec M. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. J Biomed Mater Res 1994;28(5):545-52
  • Bulstra SK, Geesink RG, Bakker D, et al. Femoral canal occlusion in total hip replacement using a resorbable and flexible cement restrictor. J Bone Joint Surg 1996;78(6):892-8
  • Mensik I, Lamme EN, Riesle J, Brychta P. Effectiveness and safety of the PEGT/PBT copolymer scaffold as dermal substitute in scar reconstruction wounds (feasibility trial). Cell Tissue Bank 2002;3(4):245-53
  • van Dijkhuizen-Radersma R, Roosma JR, Kaim P, et al. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications. J Biomed Mater Res part A 2003;67(4):1294-304
  • van Dijkhuizen-Radersma R, Roosma JR, Sohier J, et al. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications: an in vivo evaluation. J Biomed Mater Res part A 2004;71(1):118-27
  • van Dijkhuizen-Radersma R, Metairie S, Roosma JR, et al. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers. J Control Release 2005;101(1-3):175-86
  • Wang J, Mao HQ, Leong KW. A novel biodegradable gene carrier based on polyphosphoester. J Am Chem Soc 2001;123(38):9480-1
  • Wang S, Wan AC, Xu X, et al. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials 2001;22(10):1157-69
  • Caliceti P, Veronese FM, Lora S. Polyphosphazene microspheres for insulin delivery. Int J Pharm 2000;211(1-2):57-65
  • Aldini NN, Caliceti P, Lora S, et al. Calcitonin release system in the treatment of experimental osteoporosis. Histomorphometric evaluation. J Orthop Res 2001;19(5):955-61
  • Ambrosio AM, Allcock HR, Katti DS, Laurencin CT. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies. Biomaterials 2002;23(7):1667-72
  • Cohen S, Bano MC, Cima LG, et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater 1993;13(1-4):3-10
  • Leong KW, Kost J, Mathiowitz E, Langer R. Polyanhydrides for controlled release of bioactive agents. Biomaterials 1986;7(5):364-71
  • Choi NS, Heller J. Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates). US Patent 1978:4.093.709
  • Burkoth AK, Burdick J, Anseth KS. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. J Biomed Mater Res 2000;51(3):352-9
  • Andriano KP, Tabata Y, Ikada Y, Heller J. in vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 1999;48(5):602-12
  • Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001;22(6):511-21
  • Fisher JP, Holland TA, Dean D, et al. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed 2001;12(6):673-87
  • Burdick JA, Peterson AJ, Anseth KS. Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials 2001;22(13):1779-86
  • Mann BK, Gobin AS, Tsai AT, et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 2001;22(22):3045-51
  • Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 2001;22(5):439-44
  • Elbert DL, Pratt AB, Lutolf MP, et al. Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Release 2001;76(1-2):11-25
  • He S, Yaszemski MJ, Yasko AW. Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer 2000;42:1251-60
  • He S, Yaszemski MJ, Yasko AW, et al. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 2000;21(23):2389-94
  • Elbert DL, Hubbell JA. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2001;2(2):430-41
  • Elisseeff J, Anseth K, Sims D, et al. Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 1999;96(6):3104-7
  • Elisseeff J, Anseth K, Sims D, et al. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 1999;104(4):1014-22
  • Peter SJ, Kim P, Yasko AW, et al. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res 1999;44(3):314-21
  • Peter SJ, Miller ST, Zhu G, et al. in vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. J Biomed Mater Res 1998;41(1):1-7
  • Peter SJ, Lu L, Kim DJ, et al. Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 2000;50(3):452-62
  • Andreopoulos FM, Roberts MJ, Bentley MD, et al. Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel. Biotechnol Bioeng 1999;65(5):579-88
  • Bell E, Rosenberg M, Kemp P, et al. Recipes for reconstituting skin. J Biomech Eng 1991;113(2):113-9
  • Choi YS, Hong SR, Lee YM, et al. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res 1999;48(5):631-9
  • Pachence JM. Collagen-based devices for soft tissue repair. J Biomed Mater Res 1996;33(1):35-40
  • Mueller SM, Shortkroff S, Schneider TO, et al. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 1999;20(8):701-9
  • Nehrer S, Breinan HA, Ramappa A, et al. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 1997;18(11):769-76
  • Nehrer S, Breinan HA, Ramappa A, et al. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998;19(24):2313-28
  • Yannas IV. Applications of ECM analogs in surgery. J Cell Biochem 1994;56(2):188-91
  • Sano A, Hojo T, Maeda M, Fujioka K. Protein release from collagen matrices. Adv Drug Deliv Rev 1998;31(3):247-66
  • Tabata Y, Miyao M, Ozeki M, Ikada Y. Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 2000;11(9):915-30
  • Ueda H, Nakamura T, Yamamoto M, et al. Repairing of rabbit skull defect by dehydrothermally crosslinked collagen sponges incorporating transforming growth factor beta1. J Control Release 2003;88(1):55-64
  • Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331(14):889-95
  • Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage 2001;9(1):22-32
  • Hunziker EB, Driesang IM, Morris EA. Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop 2001;391(Suppl):S171-81
  • Chakkalakal DA, Strates BS, Garvin KL, et al. Demineralized bone matrix as a biological scaffold for bone repair. Tissue Eng 2001;7(2):161-77
  • Mauney JR, Jaquiery C, Volloch V, et al. in vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 2005;26(16):3173-85
  • Peterson B, Whang PG, Iglesias R, et al. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Sur 2004;86-A(10):2243-50
  • Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials 1997;18(8):583-90
  • Terada S, Yoshimoto H, Fuchs JR, et al. Hydrogel optimization for cultured elastic chondrocytes seeded onto a polyglycolic acid scaffold. J Biomed Mater Res part A 2005;75(4):907-16
  • Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21(21):2155-61
  • Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20(12):1133-42
  • Solchaga LA, Gao J, Dennis JE, et al. Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 2002;8(2):333-47
  • Segura T, Anderson BC, Chung PH, et al. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 2005;26(4):359-71
  • Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998;31(3):267-85
  • Perets A, Baruch Y, Weisbuch F, et al. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res 2003;65A(4):489-97
  • Chandy T, Sharma CP. Chitosan – as a biomaterial. Biomaterials, Artificial Cells, and Artif. Organs 1990;18(1):1-24
  • Lee JY, Nam SH, Im SY, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 2002;78(1-3):187-97
  • Lee JE, Kim SE, Kwon IC, et al. Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Artif Organs 2004;28(9):829-39
  • Kim SE, Park JH, Cho YW, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-[beta]1: Implications for cartilage tissue engineering. J Control Release 2003;91(3):365-74
  • Park YJ, Lee YM, Lee JY, et al. Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J Control Release 2000;67(2-3):385-94
  • Park YJ, Lee YM, Park SN, et al. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 2000;21(2):153-9
  • Lee YM, Park YJ, Lee SJ, et al. The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 2000;71(3):418-24
  • Campoccia D, Doherty P. Radice M, et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 1998;19(23):2101-27
  • Brun P, Cortivo R, Zavan B, et al. in vitro reconstructed tissues on hyaluronan-based temporary scaffolding. J Mater Sci Mater Med 1999;10(10/11):683-8
  • Aigner J, Tegeler J, Hutzler P, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 1998;42(2):172-81
  • Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen 1999;7(2):79-89
  • Giuggioli D, Sebastiani M, Cazzato M, et al. Autologous skin grafting in the treatment of severe scleroderma cutaneous ulcers: a case report. Rheumatology (Oxford) 2003;42(5):694-6
  • Pavesio A, Abatangelo G, Borrione A, et al. Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 2003;249:203-17; discussion 229-33, 234-8, 239-41
  • Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 2002;59(3):573-84
  • Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005;26(33):6565-78
  • Pouton CW, Akhtar S. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 1996;18(2):133-62
  • Deng Y, Zhao K, Zhang XF, et al. Chen, Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 2002;23(20):4049-56
  • Cima LG, Vacanti JP, Vacanti C, et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991;113(2):143-51
  • Smilenov LB, Mikhailov A, Pelham RJ, et al. Focal adhesion motility revealed in stationary fibroblasts. Science 1999;286(5442):1172-4
  • Mikos AG, Bao Y, Cima LG, et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 1993;27(2):183-9
  • Mooney DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996;17(14):1417-22
  • Whang K, Thomas CK, Nuber G, Healy KE. A novel method to fabricate bioabsorbable scaffolds. Polymer 1995;36:837-42
  • Schoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 2001;58(4):352-7
  • Mikos AG, Thorsen AJ, LA C, et al. Preparation and characterization of poly(L-lactic acid) foams. Polymer 1994;35:1068-77
  • Sarazin P, Favis BD. Morphology control in co-continuous poly(L-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(L-lactide) materials. Biomacromolecules 2003;4(6):1669-79
  • Claase MB, Grijpma DW, Mendes SC, et al. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing. J Biomed Mater Res part A 2003;64(2):291-300
  • Sheridan MH, Shea LD, Peters MC, Mooney DJ. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 2000;64(1-3):91-102
  • Yoon JJ, Kim JH, Park TG. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Biomaterials 2003;24(13):2323-9
  • Shastri VP, Martin I, Langer R. Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA 2000;97(5):1970-5
  • Pego AP, Siebum B, Van Luyn MJ, et al. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering. Tissue Eng 2003;9(5):981-94
  • Mahmood TA, Shastri VP, van Blitterswijk CA, et al. Tissue engineering of bovine articular cartilage within porous poly(ether ester) copolymer scaffolds with different structures. Tissue Eng 2005;11(7-8):1244-53
  • Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29-39; discussion 39-40
  • Malda J, Woodfield TB, van der Vloodt F, et al. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 2004;25(26):5773-80
  • Malda J, van den Brink P, Meeuwse P, et al. Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture. Tissue Eng 2004;10(7-8):987-94
  • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002;8(1):1-11
  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotech 2004;22(12):643-52
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4(7):518-24
  • Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 2003;24(1):181-94
  • Lin CY, Kikuchi N, Hollister SJ. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 2004;37(5):623-36
  • Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2005
  • Yan Y, Xiong Z, Hu Y, et al. Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Mater Lett 2003;57:2623-8
  • Giordano RA, Wu BM, Borland SW, et al. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed 1996;8(1):63-75
  • Pfister A, Landers R, Laib A, et al. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Part A Polym Chem 2004;42:624-38
  • Tan KH, Chua CK, Leong KF, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 2005;15(1-2):113-24
  • Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005;26(23):4817-27
  • Takesada M, Vanagas E, Tuzhilin D, et al. Micro-character printing on a diamond plate by femtosecond infrared optical pulses japanese. J Appl Phys 2003;42:4613-6
  • Antonov EN, Bagratashvili VN, Whitaker MJ, et al. Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv mater 2005;17:327-30
  • Chu TM, Orton DG, Hollister SJ, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002;23(5):1283-93
  • Elisseeff J, McIntosh W, Fu K, et al. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001;19(6):1098-104
  • Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials 1997;18(18):1201-25
  • McKay I, Leigh I. Growth factors – a practical approach. In: Rickwood D, Hames BD, editor, The practical approach series. IRL Press at Oxford University Press; 1993
  • Le Roith D, Blakesley VA. Biology of growth factors. In: Canalis E, editor, Skeletal growth factors. Lippincott Williams & Wilkins: Philadelphia; 2000. p. 31-50
  • Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 2006;3(1):29-47
  • Croucher PI, Russel RGG. Growth factors. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of bone and cartilage metabolism. Academic Press: London; 1999. p. 83-96
  • Mark Saltzman W, Baldwin SP. Materials for protein delivery in tissue engineering. Adv Drug Deliv Rev 1998;33(1-2):71-86
  • Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg 2004;57(3):215-21
  • Roberts A. Transforming growth factor-beta. In: Canalis E, editor, Skeletal growth factors. Lippincott Williams & Wilkins: Philadelphia; 2000. p. 221-32
  • Pfeilschifter J. Tranforming growth factor-beta. In: Habenicht A, editor, Growth factors, differentiation factors, and cytokines. Springer-Verlag: Berlin; 1990
  • Sherris DA, Murakami CS, Larrabee WF Jr, Bruce AG. Mandibular reconstruction with transforming growth factor-beta1. Laryngoscope 1998;108(3):368-72
  • Steinbrech DS, Mehrara BJ, Rowe NM, et al. Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg 2000;105(6):2028-38
  • Phillips GD, Whitehead RA, Stone AM, et al. Transforming growth factor beta (TGF-B) stimulation of angiogenesis: an electron microscopic study. J Submicrosc Cytol Pathol 1993;25(2):149-55
  • Dinbergs ID, Brown L, Edelman ER. Cellular response to transforming growth factor-beta1 and basic fibroblast growth factor depends on release kinetics and extracellular matrix interactions. J Biol Chem 1996;271(47):29822-9
  • Blottner D, Wolf N, Lachmund A, et al. TGF-beta rescues target-deprived preganglionic sympathetic neurons in the spinal cord. Eur J Neurosci 1996;8(1):202-10
  • O'Kane S, Ferguson MW. Transforming growth factor beta s and wound healing. Int J Biochem Cell Biology 1997;29(1):63-78
  • Beck LS, Chen TL, Mikalauski P, Ammann AJ. Recombinant human transforming growth factor-beta 1 (rhTGF-beta 1) enhances healing and strength of granulation skin wounds. Growth Factors 1990;3(4):267-75
  • Wakefield LM, Winokur TS, Hollands RS, et al. Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 1990;86(6):1976-84
  • Ignotz RA, Endo T, Massague J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem 1987;262(14):6443-6
  • Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1986;261(9):4337-45
  • Streuli CH, Schmidhauser C, Kobrin M, et al. Extracellular matrix regulates expression of the TGF-beta 1 gene. J Cell Biol 1993;120(1):253-60
  • Chen JK, Hoshi H, McKeehan WL. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci USA 1987;84(15):5287-91
  • Johnstone B, Hering TM, Caplan AI, et al. in vitro chondrogenesis of bone arrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238(1):265-72
  • Noth U, Osyczka AM, Tuli R, et al. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002;20(5):1060-9
  • Williams CG, Kim TK, Taboas A, et al. in vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 2003;9(4):679-88
  • Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 2004;320(3):914-9
  • Yoo JU, Barthel TS, Nishimura K, et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg 1998;80(12):1745-57
  • Darling EM, Athanasiou KA. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res 2005;322(3):463-73
  • Olney RC, Wang J, Sylvester JE, Mougey EB. Growth factor regulation of human growth plate chondrocyte proliferation in vitro. Biochem Biophys Res Commun 2004;317(4):1171-82
  • Boumediene K, Vivien D, Macro M, et al. Modulation of rabbit articular chondrocyte (RAC) proliferation by TGF-beta isoforms. Cell Prolif 1995;28(4):221-34
  • Grimaud E, Heymann D, Redini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 2002;13(3):241-57
  • van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage 2000;8(1):25-33
  • Clemmons DR. Insulin-like growth factors: their binding proteins and growth regulation. In: Canalis E, editor, Skeletal growth factors. Lippincott Williams & Wilkins: Philadelphia; 2000. p. 79-99
  • Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol (Copenh) 1989;121(6):753-8
  • Kiepe D, Ciarmatori S, Hoeflich A, et al. Insulin-like growth factor (IGF)-I stimulates cell proliferation and induces IGF binding protein (IGFBP)-3 and IGFBP-5 gene expression in cultured growth plate chondrocytes via distinct signaling pathways. Endocrinology 2005;146(7):3096-104
  • Martin JA, Buckwalter JA. Effects of fibronectin on articular cartilage chondrocyte proteoglycan synthesis and response to insulin-like growth factor-I. J Orthop Res 1998;16(6):752-7
  • Martin JA, Buckwalter JA. The role of chondrocyte-matrix interactions in maintaining and repairing articular cartilage. Biorheology 2000;37(1-2):129-40
  • Makower AM, Wroblewski J, Pawlowski A. Effects of IGF-I, rGH, FGF, EGF and NCS on DNA-synthesis, cell proliferation and morphology of chondrocytes isolated from rat rib growth cartilage. Cell Biol Int Reports 1989;13(3):259-70
  • Morales TI. The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage. Arch Biochem Biophys 1997;343(2):164-72
  • Loeser RF, Todd MD, Seely BL. Prolonged treatment of human osteoarthritic chondrocytes with insulin-like growth factor-I stimulates proteoglycan synthesis but not proteoglycan matrix accumulation in alginate cultures. J Rheumatol 2003;30(7):1565-70
  • De Mattei M, Pellati A, Pasello M, et al. Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthritis Cartilage 2004;12(10):793-800
  • Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg 2002;84(2):276-88
  • Urist MR. Bone: formation by autoinduction. Science 1965;150(698):893-9
  • Kawabata M, Kohei M. Bone morphogenetic proteins. In: Canalis E, editor, Skeletal growth factors. Lippincott Williams & Wilkins: Philadelphia; 2000. p. 269-90
  • Li J, Kim KS, Park JS, et al. BMP-2 and CDMP-2: stimulation of chondrocyte production of proteoglycan. J Orthop Sci 2003;8(6):829-35
  • Sailor LZ, Hewick RM, Morris EA. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture. J Orthop Res 1996;14(6):937-45
  • Lietman SA, Yanagishita M, Sampath TK, Reddi AH. Stimulation of proteoglycan synthesis in explants of porcine articular cartilage by recombinant osteogenic protein-1 (bone morphogenetic protein-7). J Bone Joint Surg 1997;79(8):1132-7
  • Luyten FP, Yu YM, Yanagishita M, et al. Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J Biol Chem 1992;267(6):3691-5
  • Luyten FP, Chen P, Paralkar V, Reddi AH. Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro. Exp Cell Res 1994;210(2):224-9
  • Majumdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 2001;189(3):275-84
  • Noel D, Gazit D, Bouquet C, et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 2004;22(1):74-85
  • Carrington JL, Chen P, Yanagishita M, Reddi AH. Osteogenin (bone morphogenetic protein-3) stimulates cartilage formation by chick limb bud cells in vitro. Dev Biol 1991;146(2):406-15
  • Chen P, Carrington JL, Hammonds RG, Reddi AH. Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res 1991;195(2):509-15
  • Kaps C, Bramlage C, Smolian H, et al. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 2002;46(1):149-62
  • Frenkel SR, Saadeh PB, Mehrara BJ, et al. Transforming growth factor beta superfamily members: role in cartilage modeling. Plast Reconstr Surg 2000;105(3):980-90
  • Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg 1997;79(10):1452-63
  • van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 1998;6(5):306-17
  • Fan H, Liu H, Zhu R, et al. Comparison of chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells. Cell Transplant 2007;16(8):823-32
  • Kanematsu A, Yamamoto S, Ozeki M, et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004;25(18):4513-20
  • Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 2001;12(1):77-88
  • Ziegler J, Mayr-Wohlfart U, Kessler S, et al. Adsorption and release properties of growth factors from biodegradable implants. J Biomed Mater Res 2002;59(3):422-8
  • Jeon O, Kang SW, Lim HW, et al. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 2006;27(8):1598-607
  • Jeon O, Ryu SH, Chung JH, Kim BS. Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 2005;105(3):249-59
  • Park JS, Woo DG, Yang HN, et al. Heparin-bound transforming growth factor-beta3 enhances neocartilage formation by Rabbit Mesenchymal stem cells. Transplantation 2008;85(4):589-96
  • Holland TA, Tessmar JKV, Tabata Y, Mikos AG. Transforming growth factor-[beta]1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 2004;94(1):101
  • Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 2005;101(1-3):111
  • Jaklenec A, Hinckfuss A, Bilgen B, et al. Sequential release of bioactive IGF-I and TGF-[beta]1 from PLGA microsphere-based scaffolds. Biomaterials 2008;29(10):1518-25
  • Raiche AT, Puleo DA. Cell responses to BMP-2 and IGF-I released with different time-dependent profiles. J Biomed Mater Res 2004;69A(2):342-50
  • Raiche AT, Puleo DA. in vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 2004;25(4):677-85
  • Sohier J, Vlugt TJH, Cabrol N, et al. Dual release of proteins from porous polymeric scaffolds. J Control Release 2006;111(1-2):95-106
  • Holland TA, Bodde EW, Baggett LS, et al. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res part A 2005;75(1):156-67
  • Cucchiarini M, Sohier J, Mitosch K, et al. Effect of transforming growth factor-β1 (TGF-β1) released from a scaffold on chondrogenesis in an osteochondral defect model in the rabbit. Cent Eur J Biol 2006;1(1)
  • Uludag H, D'Augusta D, Golden J, et al. Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: a correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model. J Biomed Mater Res 2000;50(2):227-38
  • Talwar R, Di Silvio L, Hughes FJ, King GN. Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. J Clin Periodontol 2001;28(4):340-7
  • King GN. The importance of drug delivery to optimize the effects of bone morphogenetic proteins during periodontal regeneration. Current Pharm Biotechnol 2001;2(2):131-42
  • Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 2001;268(2):189-200
  • Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 2003;11(1):55-64
  • Hanada K, Solchaga LA, Caplan AI, et al. BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell chondrogenesis. J Cell Biochem 2001;81(2):284-94
  • Park Y, Sugimoto M, Watrin A, et al. Hunziker, BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 2005;13(6):527-36
  • Sekiya I, Larson BL, Vuoristo JT, et al. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 2005;320(2):269-76
  • Madry H, Emkey G, Zurakowski D, Trippel SB. Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation. J Gene Med 2004;6(2):238-45
  • Fujisato T, Sajiki T, Liu Q, Ikada Y. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold. Biomaterials 1996;17(2):155-62
  • Morales TI. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures. Arch Biochem Biophys 1991;286(1):99-106
  • van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 1994;71(2):279-90
  • Glansbeek HL, van Beuningen HM, Vitters EL, et al. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest 1998;78(2):133-42
  • Sah RL, Chen AC, Grodzinsky AJ, Trippel SB. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 1994;308(1):137-47
  • Holland TA, Tabata Y, Mikos AG. in vitro release of transforming growth factor-[beta]1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 2003;91(3):299
  • Yamamoto M, Tabata Y, Hong L, et al. Bone regeneration by transforming growth factor beta1 released from a biodegradable hydrogel. J Control Release 2000;64(1-3):133-42
  • Maire M, Logeart-Avramoglou D, Degat M-C, Chaubet F. Retention of transforming growth factor [beta]1 using functionalized dextran-based hydrogels. Biomaterials 2005;26(14):1771
  • Agrawal CM, Best J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials 1995;16(16):1255-60
  • Weber FE, Eyrich G, Gratz KW, et al. Slow and continuous application of human recombinant bone morphogenetic protein via biodegradable poly(lactide-co-glycolide) foamspheres. Int J Oral Maxillofac Surg 2002;31(1):60-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.