1,357
Views
213
CrossRef citations to date
0
Altmetric
Review

Ocular novel drug delivery: impacts of membranes and barriers

, &
Pages 567-581 | Published online: 20 May 2008

Bibliography

  • Macha S, Mitra AK. Overview of ocular drug delivery. In: Mitra AK, editor, Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc.; 2003. p. 1-12
  • Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. In: Fischbarg J, editor, The biology of eye. New York: Academic Press; 2006. p. 307-51
  • El-Beik S, Elligott R. Macular degeneration – advances in treatment. Hosp Pharm 2007;14:155-60
  • Bakri SJ, Kaiser PK. Antiangiogenic agents: intravitreal injection. In: Jaffe GJ, Ashton P, Pearson PA, editors, Intraocular drug delivery. New York: Taylor & Francis Group, LLC; 2006. p. 71-84
  • Chastain JE. General considerations in ocular drug delivery. In: Mitra AK, editor, Ophthalmic drug delivery systems. 2nd edtion. New York: Marcel Dekker, Inc.; 2003. p. 59-108
  • Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Res 2008;48:319-24
  • Sanders NN, Peeters L, Lentacker I, et al. Wanted and unwanted properties of surface PEGylated nucleic acid nanoparticles in ocular gene transfer. J Control Rel 2007;122:226-35
  • Pardridge WM. Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Rel 2007;122:345-8
  • Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006;13:225-34
  • Boado RJ, Zhang Y, Zhang Y, et al. Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood–brain barrier. Biotechnol Bioeng 2008;99:475-84
  • Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006;3:275-87
  • Lee VHL, Carson LW, Takemoto KA. Macromolecular drug absorption in the albino rabbit eye. Int J Pharm 1986;29:43-51
  • Lehr CM, Lee YH, Lee VH. Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. Invest Ophthalmol Vis Sci 1994;35:2809-14
  • Koevary SB. Trends in the noncorneal delivery of drugs into the eye. Arch Soc Esp Oftalmol 2002;77:347-9
  • Lee VH. New directions in the optimization of ocular drug delivery. J Ocul Pharmacol 1990;6:157-64
  • Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci 1983;72:1272-9
  • Schoenwald RD, Huang HS. Corneal penetration behavior of beta-blocking agents I: physiochemical factors. J Pharm Sci 1983;72:1266-72
  • Sunkara G, Kompella UB. Membrane transport processes in the eye. In: Mitra AK, editor, Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc.; 2003. p. 13-58
  • Dartt DA, Hodges RR, Zoukhri D. Tear and their secretion. In: Fischbarg J, editor, The biology of eye. New York: Academic Press; 2006. p. 21-82
  • Watanabe H. Significance of mucin on the ocular surface. Cornea 2002;21:S17-22
  • Ahmed I. The noncorneal route in ocular drug delivery. In: Mitra AK, editor, Ophthalmic drug delivery systems. 2nd edition. New York: Marcel Dekker, Inc.; 2003. p. 335-63
  • Shedden AH, Laurence J, Barrish A, Olah TV. Plasma timolol concentrations of timolol maleate: timolol gel-forming solution (TIMOPTIC-XE) once daily versus timolol maleate ophthalmic solution twice daily. Doc Ophthalmol 2001;103:73-9
  • Cao Y, Zhang C, Shen W, et al. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Rel 2007;120:186-94
  • Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Del Rev 2005;57:1595-639
  • Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents III: in vitro – in vivo correlations. J Pharm Sci 1983;72:1279-81
  • La Cour M, Ehinger B. The retina. In: Fischbarg J, editor, The biology of eye. New York: Academic Press; 2006. p. 195-252
  • Kuang K, Li Y, Yiming M, et al. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells. Exp Eye Res 2004;79:93-103
  • Fischbarg J. On the mechanism of fluid transport across corneal endothelium and epithelia in general. J Exp Zoolog A Comp Exp Biol 2003;300:30-40
  • Fischbarg J. The corneal endothelim. In: Fischbarg J, editor, The biology of eye. New York: Academic Press; 2006. p. 113-25
  • Geroski DH, Hadley A. Characterization of corneal endothelium cell cultured on microporous membrane filters. Curr Eye Res 1992;11:61-72
  • Ma L, Kuang K, Smith RW, et al. Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium. Exp Eye Res 2007;84:790-8
  • Zhu Z, Kuang K, Kang F, et al. Platelet activating factor inhibits fluid transport by corneal endothelium. Invest Ophthalmol Vis Sci 1996;37:1899-906
  • Omidi Y, Campbell L, Barar J, et al. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 2003;990:95-112
  • Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target 2007;15:253-68
  • Toropainen E, Ranta VP, Talvitie A, et al. Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci 2001;42:2942-8
  • Chang JE, Basu SK, Lee VH. Air–interface condition promotes the formation of tight corneal epithelial cell layers for drug transport studies. Pharm Res 2000;17:670-6
  • Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 2003;3:45-56
  • Saha P, Kim KJ, Lee VH. A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties. Curr Eye Res 1996;15:1163-9
  • Liaw J, Chang SF, Hsiao FC. in vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther 2001;8:999-1004
  • Einmahl S, Capancioni S, Schwach-Abdellaoui K, et al. Therapeutic applications of viscous and injectable poly(ortho esters). Adv Drug Deliv Rev 2001;53:45-73
  • Lee TW, Robinson JR. Drug delivery to the posterior segment of the eye III: the effect of parallel elimination pathway on the vitreous drug level after subconjunctival injection. J Ocul Pharmacol Ther 2004;20:55-64
  • Robinson MR, Lee SS, Kim H, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 2006;82:479-87
  • Kothuri MK, Pinnamaneni S, Das NG, Das SK. Microparticles and nanoparticles in ocular drug delivery. In: Mitra AK, editor, Ophthalmic drug delivery systems. 2nd edition. New York: Marcel Dekker, Inc.; 2003. p. 437-66
  • Hosoya K, Horibe Y, Kim KJ, Lee VH. Nucleoside transport mechanisms in the pigmented rabbit conjunctiva. Invest Ophthalmol Vis Sci 1998;39:372-7
  • Hosoya Ki, Lee VHL, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm 2005;60:227-40
  • Ganapathy ME, Ganapathy V. Amino acid transporter ATB0,+ as a delivery system for drugs and prodrugs. Curr Drug Targets Immune Endocr Metab Disord 2005;5:357-64
  • Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci 1998;39:1221-6
  • Yang JJ, Ann DK, Kannan R, Lee VH. Multidrug resistance protein 1 (MRP1) in rabbit conjunctival epithelial cells: its effect on drug efflux and its regulation by adenoviral infection. Pharm Res 2007;24:1490-500
  • Hamalainen KM, Kananen K, Auriola S, et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 1997;38:627-34
  • Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthal Res 2007;39:244-54
  • Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 2000;41:1181-5
  • Stewart PA, Tuor UI. Blood–eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol 1994;340:566-76
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I. Viscoelasticity of human vitreous. Biorheology 1992;29:521-33
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part 2. Viscoelasticity of bovine and porcine vitreous. Biorheology 1994;31:327-38
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part 3. Concentration of electrolytes, collagen and hyaluronic acid. Biorheology 1994;31:339-51
  • Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004;1:99-114
  • Bill A. The blood–aqueous barrier. Trans Ophthalmol Soc UK 1986;105(Pt 2):149-55
  • Freddo TF. Shifting the paradigm of the blood–aqueous barrier. Exp Eye Res 2001;73:581-92
  • Cunha-Vaz JG. The blood–ocular barriers: past, present, and future. Doc Ophthalmol 1997;93:149-57
  • Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm 2005;60:207-25
  • Schlingemann RO, Hofman P, Klooster J, et al. Ciliary muscle capillaries have blood–tissue barrier characteristics. Exp Eye Res 1998;66:747-54
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 2006;58:1131-5
  • Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006;58:1136-63
  • Lin H, Kenyon E, Miller SS. Na-dependent pHi regulatory mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1992;33:3528-38
  • Quinn RH, Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1992;33:3513-27
  • Gardner TW, Antonetti DA, Barber AJ, et al. The molecular structure and function of the inner blood–retinal barrier. Penn State Retina Research Group. Doc Ophthalmol 1999;97:229-37
  • Selvin BL. Systemic effects of topical ophthalmic medications. South Med J 1983;76:349-58
  • Omidi Y, Gumbleton M. Biological membranes and barriers. In: Mahato RI, editor, Biomaterials for delivery and targeting of proteins nucleic acids. New York: CRC Press; 2005. p. 232-74
  • Jentsch TJ, Matthes H, Keller SK, Wiederholt M. Anion dependence of electrical effects of bicarbonate and sodium on cultured bovine corneal endothelial cells. Pflugers Arch 1985;403:175-85
  • Jentsch TJ, Keller SK, Wiederholt M. Ion transport mechanisms in cultured bovine corneal endothelial cells. Curr Eye Res 1985;4:361-9
  • Gao J, Sun X, Yatsula V, et al. Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium. J Membr Biol 2000;178:89-101
  • Sun XC, Bonanno JA, Jelamskii S, Xie Q. Expression and localization of Na(+)-HCO(3)(-) cotransporter in bovine corneal endothelium. Am J Physiol Cell Physiol 2000;279:C1648-55
  • Dey S, Mitra AK. Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv 2005;2:201-4
  • Omidi Y, Barar J, Ahmadian S, et al. Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Cell Biochem Funct 2008;26:381-91
  • Shimoyama Y, Akihara Y, Kirat D, et al. Expression of monocarboxylate transporter 1 in oral and ocular canine melanocytic tumors. Vet Pathol 2007;44:449-57
  • Fischbarg J, Diecke FP, Iserovich P, Rubashkin A. The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a Driving Force. J Membr Biol 2006;210:117-30
  • Schorderet DF, Manzi V, Canola K, et al. D-TAT transporter as an ocular peptide delivery system. Clin Exp Ophthalmol 2005;33:628-35
  • Atluri H, Anand BS, Patel J, Mitra AK. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res 2004;78:815-22
  • Hamann S. Molecular mechanisms of water transport in the eye. In: Thomas Zeuthen, Wilfred, editors, Int Rev Cytol. Molecular mechanisms of water transport across biological membranes. Volume 215 ed. Academic Press; 2002. p. 395-431
  • Gerhart DZ, Leino RL, Drewes LR. Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience 1999;92:367-75
  • Dey S, Patel J, Anand BS, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci 2003;44:2909-18
  • Karla PK, Pal D, Quinn T, Mitra AK. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm 2007;336:12-21
  • Holash JA, Stewart PA. The relationship of astrocyte-like cells to the vessels that contribute to the blood–ocular barriers. Brain Res 1993;629:218-24
  • Duvvuri S, Gandhi MD, Mitra AK. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res 2003;27:345-53
  • Wu J, Zhang JJ, Koppel H, Jacob TJ. P-glycoprotein regulates a volume-activated chloride current in bovine non-pigmented ciliary epithelial cells. J Physiol 1996;491(Pt 3):743-55
  • Lo WK, Zhou CJ, Reddan J. Identification of caveolae and their signature proteins caveolin 1 and 2 in the lens. Exp Eye Res 2004;79:487-98
  • Bridges CC, El-Sherbeny A, Roon P, et al. A comparison of caveolae and caveolin-1 to folate receptor alpha in retina and retinal pigment epithelium. Histochem J 2001;33:149-58
  • Lo WK, Mills A, Zhang W, Zhu H. Polarized distribution of coated pits and coated vesicles in the rat lens: an electron microscopy and WGA-HRP tracer study. Curr Eye Res 1991;10:1151-63
  • Hunt RC, Dewey A, Davis AA. Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton. J Cell Sci 1989;92(Pt 4):655-66
  • Sabah JR, Schultz BD, Brown ZW, et al. Transcytotic passage of albumin through lens epithelial cells. Invest Ophthalmol Vis Sci 2007;48:1237-44
  • Mo Y, Barnett ME, Takemoto D, et al. Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 2007;13:746-57
  • Qaddoumi MG, Gukasyan HJ, Davda J, et al. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol Vis 2003;9:559-68
  • Rocha EM, Cunha DA, Carneiro EM, et al. Identification of insulin in the tear film and insulin receptor and IGF-1 receptor on the human ocular surface. Invest Ophthalmol Vis Sci 2002;43:963-7
  • Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 2006;12:1185-98
  • Costabile BS. Treatment of cytomegalovirus retinitis with intraocular implants. AORN J 1998;67:356-5, 368
  • Lopez-Cortes LF, Pastor-Ramos MT, Ruiz-Valderas R, et al. Intravitreal pharmacokinetics and retinal concentrations of ganciclovir and foscarnet after intravitreal administration in rabbits. Invest Ophthalmol Vis Sci 2001;42:1024-8
  • Stone TW, Jaffe GJ. Reversible bull's-eye maculopathy associated with intravitreal fomivirsen therapy for cytomegalovirus retinitis. Am J Ophthalmol 2000;130:242-3
  • Cantrill HL, Henry K, Melroe NH, et al. Treatment of cytomegalovirus retinitis with intravitreal ganciclovir. Long-term results. Ophthalmology 1989;96:367-74
  • Bu HZ, Gukasyan HJ, Goulet L, et al. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007;8:91-107
  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008;13:144-51
  • Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomedicine 2007;2:11-21
  • Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 2001;52:5-16
  • Jose Alonso M. Nanomedicines for overcoming biological barriers. Biomed Pharmacother 2004;58:168-72
  • Bejjani RA, BenEzra D, Cohen H, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005;11:124-32
  • Adibkia K, Omidi Y, Siahi MR, et al. Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther 2007;23:421-32
  • Adibkia K, Siahi Shadbad MR, Nokhodchi A, et al. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Target 2007;15:407-16
  • Ophthalmology-pSivida. Available from: http://www.psivida.com/application/ophthalmology.asp [Last accessed 20 March 2008]
  • Rana ZA, Pearson PA. Pharmacologic treatment in diabetic macular edema. In: Jaffe GJ, Ashton P, Pearson PA, editors, Intraocular drug delivery. New York: Taylor & Francis Group, LLC; 2006. p. 291-300
  • Ashton P. Retinal drug delivery. In: Jaffe GJ, Ashton P, Pearson PA, editors, Intraocular drug delivery. New York: Taylor & Francis Group, LLC; 2006. p. 1-25
  • Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004;269:1-14
  • Asrani S, Goldberg MF, Zeimer R. Thermal-sensitive liposomes. In: Jaffe GJ, Ashton P, Pearson PA, editors, Intraocular drug delivery. New York: Taylor & Francis Group, LLC; 2006. p. 143-56
  • Pece A, Isola V, Vadala M, Calori G. Photodynamic therapy with verteporfin for choroidal neovascularization associated with retinal pigment epithelial detachment in age-related macular degeneration. Retina 2007;27:342-8
  • Ju M, Mailhos C, Bradley J, et al. Simultaneous but not prior inhibition of VEGF165 enhances the efficacy of photodynamic therapy in multiple models of ocular neovascularization. Invest Ophthalmol Vis Sci 2008;49:662-70
  • Lazic R, Gabric N. Verteporfin therapy and intravitreal bevacizumab combined and alone in choroidal neovascularization due to age-related macular degeneration. Ophthalmology 2007;114:1179-85
  • Bainbridge JW, Ali RR. Ocular gene therapy trials due to report this year; Keeping an eye on clinical trials in 2008. Gene Ther 2008;15:633-4
  • Auricchio A, Rivera VM, Clackson T, et al. Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol Ther 2002;6:238-42
  • Auricchio A. Pseudotyped AAV vectors for constitutive and regulated gene expression in the eye. Vision Res 2003;43:913-8
  • Hamilton MM, Brough DE, McVey D, et al. Repeated administration of adenovector in the eye results in efficient gene delivery. Invest Ophthalmol Vis Sci 2006;47:299-305
  • Bloquel C, Bourges JL, Touchard E, et al. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 2006;58:1224-42
  • Peeters L, Sanders NN, Braeckmans K, et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 2005;46:3553-61
  • Andrieu-Soler C, Bejjani RA, de Bizemont T, et al. Ocular gene therapy: a review of nonviral strategies. Mol Vis 2006;12:1334-47
  • Le MG, Stieger K, Smith AJ, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 2007;14:292-303
  • Bainbridge JW, Tan MH, Ali RR. Gene therapy progress and prospects: the eye. Gene Ther 2006;13:1191-7
  • Frank RG. New estimates of drug development costs. J Health Econ 2003;22:325-30
  • Hayek S, Scherrer M, Barthelmes D, et al. First clinical experience with anecortave acetate (Retaane). Klin Monatsbl Augenheilkd 2007;224:279-81
  • Gene therapy clinical trials worldwide. Available from: http://www.wiley.co.uk/genmed/clinical/ [Last accessed 26 March 2008]
  • Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007;4:371-88
  • Maguire AM, Bennett J. Gene theraphy for retinal disease. In: Jaffe GJ, Ashton P, Pearson PA, editors, Intraocular drug delivery. New York: Taylor & Francis Group, LLC; 2006. p. 157-73
  • Tao W, Wen R, Laties A, Aguirre GD. Cell-based delivery systems: development of encapsulated cell technology for ophthalmic applications. In: Jaffe GJ, Ashton P, Pearson PA, editors, Intraocular drug delivery. New York: Taylor & Francis Group, LLC; 2006. p. 111-28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.