1,791
Views
235
CrossRef citations to date
0
Altmetric
Review

Mannose-targeted systems for the delivery of therapeutics

, , &
Pages 703-724 | Published online: 05 Jun 2008

Bibliography

  • Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2002;2:77-84
  • McGreal EP, Martinez-Pomares L, Gordon S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol Immunol 2004;41:1109-21
  • Keler T, Ramakrishna V, Fanger MW. Mannose receptor-targeted vaccines. Expert Opin Biol Ther 2004;4:1953-62
  • Gijzen K, Cambi A, Torensma R, Figdor CG. C-type lectins on dendritic cells and their interaction with pathogen-derived and endogenous glycoconjugates. Curr Protein Pept Sci 2006;7:283-94
  • A genomics resource for animal lectins. C-type lectin-like domain. Available from: http://www.imperial.ac.uk/research/animallectins/ [Last accessed 10 March 2008]
  • McGreal EP, Miller JL, Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 2005;17:18-24
  • Lee RT, Lee YC. Affinity enhancement by multivalent lectin–carbohydrate interaction. Glycoconj J 2000;17:543-51
  • Napper CE, Dyson MH, Taylor ME. An extended conformation of the macrophage mannose receptor. J Biol Chem 2001;276:14759-66
  • Taylor ME, Bezouska K, Drickamer K. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 1992;267:1719-26
  • East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002;1572:364-86
  • Feinberg H, Castelli R, Drickamer K, et al. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J Biol Chem 2007;282:4202-9
  • Feinberg H, Guo Y, Mitchell DA, et al. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J Biol Chem 2005;280:1327-35
  • Dommett RM, Klein N, Turner MW. Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 2006;68:193-209
  • Ng KK, Kolatkar AR, Park-Snyder S, et al. Orientation of bound ligands in mannose-binding proteins. Implications for multivalent ligand recognition. J Biol Chem 2002;277:16088-95
  • Frison N, Taylor ME, Soilleux E, et al. Oligolysine-based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J Biol Chem 2003;278:23922-9
  • Engering A, Geijtenbeek TB, van Vliet SJ, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 2002;168:2118-26
  • Engering AJ, Cella M, Fluitsma D, et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J Immunol 1997;27:2417-25
  • Engering AJ, Cella M, Fluitsma DM, et al. Mannose receptor mediated antigen uptake and presentation in human dendritic cells. Adv Exp Med Biol 1997;417:183-7
  • Taylor PR, Gordon S, Martinez-Pomares L. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 2005;26:104-10
  • Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens? Cell Microbiol 2005;7:481-8
  • Apostolopoulos V, Barnes N, Pietersz GA, McKenzie IF. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine 2000;18:3174-84
  • He LZ, Crocker A, Lee J, et al. Antigenic targeting of the human mannose receptor induces tumor immunity. J Immunol 2007;178:6259-67
  • Gupta G, Surolia A. Collectins: sentinels of innate immunity. Bioessays 2007;29:452-64
  • Lee SJ, Evers S, Roeder D, et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 2002;295:1898-901
  • Leteux C, Chai W, Loveless RW, et al. The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewis(a) and Lewis(x) types in addition to the sulfated N-glycans of lutropin. J Exp Med 2000;191:1117-26
  • Martinez-Pomares L, Wienke D, Stillion R, et al. Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur J Immunol 2006;36:1074-82
  • Geijtenbeek TB, Krooshoop DJ, Bleijs DA, et al. DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 2000;1:353-7
  • Geijtenbeek TB, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000;100:575-85
  • Baumann R, Casaulta C, Simon D, et al. Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB J 2003;17:2221-30
  • Cambi A, Figdor CG. Levels of complexity in pathogen recognition by C-type lectins. Curr Opin Immunol 2005;17:345-51
  • Ramakrishna V, Treml JF, Vitale L, et al. Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J Immunol 2004;172:2845-52
  • Ramakrishna V, Vasilakos JP, Tario JD, et al. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells. J Transl Med 2007;5:5
  • Caparros E, Munoz P, Sierra-Filardi E, et al. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 2006;107:3950-8
  • Hodges A, Sharrocks K, Edelmann M, et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 2007;8:569-77
  • Steeghs L, van Vliet SJ, Uronen-Hansson H, et al. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol 2006;8:316-25
  • McKenzie EJ, Taylor PR, Stillion RJ, et al. Mannose receptor expression and function define a new population of murine dendritic cells. J Immunol 2007;178:4975-83
  • Soilleux EJ, Morris LS, Leslie G, et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 2002;71:445-57
  • Soilleux EJ, Morris LS, Lee B, et al. Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J Pathol 2001;195:586-92
  • Geijtenbeek TB, van Vliet SJ, Engering A, et al. Self- and nonself-recognition by C-type lectins on dendritic cells. Ann Rev Immunol 2004;22:33-54
  • Kogelberg H, Tolner B, Sharma SK, et al. Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy. Glycobiology 2007;17:36-45
  • Gras-Masse H. Chemoselective ligation and antigen vectorization. Biologicals 2001;29:183-8
  • Narendran P, Elsegood K, Leech NJ, et al. Dendritic cell-based assays, but not mannosylation of antigen, improves detection of T-cell responses to proinsulin in type 1 diabetes. Immunology 2004;111:422-9
  • Gijzen K, Tacken PJ, Zimmerman A, et al. Relevance of DC-SIGN in DC-induced T cell proliferation. J Leukoc Biol 2007;81:729-40
  • Tan MC, Mommaas AM, Drijfhout JW, et al. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol 1997;27:2426-35
  • Tan MC, Jordens R, Geluk A, et al. Strongly increased efficiency of altered peptide ligands by mannosylation. Int Immunol 1998;10:1299-304
  • Tan MC, Mommaas AM, Drijfhout JW, et al. Mannose receptor mediated uptake of antigens strongly enhances HLA-class II restricted antigen presentation by cultured dendritic cells. Adv Exp Med Biol 1997;417:171-4
  • Lee YC, Lee RT. Neoglycoconjugates: preparation and application. Academic Press: San Diego; 1994
  • Baker CJ, Edwards MS. Group B streptococcal infections. In: Remington JS, Klein JO, editors, Infectious diseases of the fetus and the newborn. 3rd edition. WB Saunders Co.: Philadelphia; 1990. p. 742-811
  • Baker CJ, Kasper DL. Group B streptococcal vaccines. Rev Infect Dis 1985;7:458-67
  • Anderson PW, Pichichero ME, Insel RA, et al. Vaccines consisting of periodate-cleaved oligosaccharides from the capsule of Haemophilus influenza type b coupled to a protein carrier: structural and temporal requirements for priming in the human infant. J Immunol 1986;137:1181-6
  • Paoletti LC, Kasper DL, Michon F, et al. An oligosaccharide–tetanus toxoid conjugate vaccine against type III group B Streptococcus. J Biol Chem 1990;265:18278-83
  • Wessels MR, Paoletti LC, Kasper DL, et al. Immunogenicity in animals of a polysaccharide–protein conjugate vaccine against type III group B Streptococcus. J Clin Invest 1990;86:1428-33
  • Lindberg B, Lonngren J, Svensson S. Specific degradation of polysaccharides. Adv Carbohydr Chem Biochem 1975;31:185-240
  • Laferriere CA, Sood RK, De Muys JM, et al. Streptococcus pneumoniae type 14 polysaccharide–conjugate vaccines: length stabilization of opsonophagocytic conformational polysaccharide epitopes. Infect Immun 1998;66:2441-6
  • Michon F, Uitz C, Srakar A, et al. Group B streptococcal type II and III conjugate vaccines: physicochemical properties that influence immunogenicity. Clin Vac Immunol 2006;13:936-43
  • Paoletti LC, Kasper DL, Michon F, et al. Effects of chain length on the immunogenicity in rabbits of group B Streptococcus type III oligosaccharide–tetanus toxoid conjugates. J Clin Invest 1992;89:203-9
  • Geijtenbeek TB, Van Vliet SJ, Koppel EA, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 2003;197:7-17
  • Tailleux L, Schwartz O, Herrmann JL, et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 2003;197:121-7
  • Koppel EA, Ludwig IS, Sanchez Hernandez M, et al. Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1. Immunobiology 2004;209:117-27
  • Barenholz A, Hovav AH, FishmanY, et al. A peptide mimetic of the mycobacterial mannosylated lipoarabinomannan: characterization and potential applications. J Med Microbiol 2007;56:579-86
  • Devi SJ. Preclinical efficacy of a glucuronoxylomannan-tetanus toxoid conjugate vaccine of Cryptococcus neoformans in a murine model. Vaccine 1996;14:841-4
  • Casadevall A, Mukherjee J, Devi SJ, et al. Antibodies elicited by a Cryptococcus. neoformans–tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J Infect Dis 1992;165:1086-93
  • Casadevall A, Cleare W, Feldmesser M, et al. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 1998;42:1437-46
  • Ellerbroek PM, Walenkamp AME, Hoepelman AIM, Coenjaerts FEJ. Effects of the capsular polysaccharides of Cryptococcus neoformans on phagocyte migration and inflammatory mediators. Curr Med Chem 2004;11:253-66
  • Oscarson S, Alpe M, Svahnberg P, et al. Synthesis and immunological studies of glycoconjugates of Cryptococcus neoformans capsular glucuronoxylomannan oligosaccharide structures. Vaccine 2005;23:3961-72
  • Maittra RW, Datta K, Lees A, et al. Immunogenicity and efficacy of Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan peptide mimotope – protein conjugates in human immunoglobulin transgenic mice. Infect Immun 2004;72:196-208
  • Pirofski LA, Casadevall A. Use of licensed vaccines for active immunization of the immunocompromised host. Clin Microbiol Rev 1998;11:1-26
  • Han Y, Ulrich MA, Cutler JE. Candida albicans mannan extract–protein conjugates induce a protective immune response against experimental candidiasis. J Infect Dis 1999;179:1477-84
  • Nitz M, Ling CC, Otter A, et al. The unique solution structure and immunochemistry of the Candida albicans b-1,2-mannopyranan cell wall antigens. J Biol Chem 2002;277:3440-6
  • Wu X, Bundle DR. Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology. J Org Chem 2005;70:7381-8
  • Cutler JE, Deepe GS, Klein BS. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 2007;5:13-28
  • Han Y, Cutler JE. Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J Infect Dis 1997;175:1169-75
  • Geijtenbeek TBH, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000;100:587-97
  • Trkola A, Purtscher M, Muster T, et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996;70:1100-8
  • Sanders RW, Venturi M, Schiffner L, et al. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 2002;76:7293-305
  • Calarese DA, Scanlan CN, Zwick MB, et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 2003;300:2065-71
  • Wang LX, Ni J, Singh S, Li H. Binding of high mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: implications for HIV-1 vaccine design. Chem Biol 2004;11:127-34
  • Lee HK, Scanlan CN, Huang CY, et al. Reactivity-based one-pot synthesis of oligomannoses: defining antigens recognized by 2G12, a broadly neutralizing anti-HIV-1 antibody. Angew Chem Int Ed 2004;43:1000-3
  • Ni J, Song H, Wang Y, et al. Toward a carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of oligomannose-containing glycoconjugates. Bioconjugate Chem 2006;17:493-500
  • Li H, Wang LX. Design and synthesis of a template assembled oligomannose cluster as an epitope mimic for human HIV neutralizing antibody 2G12. Org Biomol Chem 2004;2:483-8
  • Chain BM, Free P, Medd P, et al. The expression and function of cathepsin E in dendritic cells. J Immunol 2005;174:1791-800
  • Bennett K, Levine T, Ellis JS, et al. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur J Immunol 1992;22:1519-24
  • Maric MA, Taylor MD, Blum JS, Endosomal aspartic proteinases are required for invariant-chain processing. Proc Natl Acad Sci USA 1994;91:2171-5
  • Binkert C, Frigerio M, Jones A, et al. Replacement of isobutyl by trifluoromethyl in pepstatin A selectively affects inhibition of aspartic proteinases. Chem Biochem 2006;7:181-6
  • Free P, Hurley CA, Kageyama T, et al. Mannose–pepstatin conjugates as targeted inhibitors of antigen processing. Org Biomol Chem 2006;4:1817-30
  • Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 2003;55:199-215
  • Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002;111:927-30
  • Miller SD, Karpus WJ. The immunopathogenesis and regulation of T-cell-mediated demyelinating diseases. Immunol Today 1994;15:356-61
  • Steinman L, Zamvil SS. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 2005;26:565-71
  • Segal BM. Experimental autoimmune encephalomyelitis: cytokines, effector T cells, and antigen-presenting cells in a prototypical Th1-mediated autoimmune disease. Curr Allergy Asthma Rep 2003;3:86-93
  • Glabinski AR, Bielecki B, O'Bryant S, et al. Experimental autoimmune encephalomyelitis: CC chemokine receptor expression by trafficking cells. J Autoimmun 2002;19:175-81
  • Kel J, Oldenampsen J, Luca M, et al. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. Am J Pathol 2007;170:272-80
  • Karanikas V, Hwang LA, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan–MUC1 fusion protein. J Clin Invest 1997;100:2783-92
  • Karanikas V, Lodding J, Maino VC, McKenzie IF. Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy. Clin Cancer Res 2000;6:829-37
  • Karanikas V, Thynne G, Mitchell P, et al. Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J Immunother 2001;24:172-83
  • Srinivas O, Larrieu P, Duverger E, et al. Synthesis of glycocluster–tumor antigenic peptide conjugates for dendritic cell targeting. Bioconjug Chem 2007;18:1547
  • Frison N, Marceau P, Roche AC, et al. Oligolysine-based saccharide clusters: synthesis and specificity. Biochem J 2002;368:111-9
  • Quetard C, Bourgerie S, Normand-Sdiqui N, et al. Novel glycosynthons for glycoconjugate preparation: oligosaccharylpyroglutamylanilide derivatives. Bioconjug Chem 1998;9:268-76
  • Monsigny M, Quetard C, Bourgerie S, et al. Glycotargeting: the preparation of glyco-amino acids and derivatives from unprotected reducing sugars. Biochimie 1998;80:99-108
  • Bedouet L, Bousser MT, Frison N, et al. Uptake of dimannoside clusters and oligomannosides by human dendritic cells. Biosci Rep 2001;21:839-55
  • Baldeschweiler JD. Phospholipid vesicle targeting using synthetic glycolipid and other determinants. Ann NY Acad Sci 1985;446:349-67
  • Barratt G, Tenu JP, Yapo A, Petit JF. Preparation and characterisation of liposomes containing mannosylated phospholipids capable of targetting drugs to macrophages. Biochim Biophys Acta 1986;862:153-6
  • Garcon N, Gregoriadis G, Taylor M, Summerfield J. Mannose-mediated targeted immunoadjuvant action of liposomes. Immunology 1988;64:743-5
  • Huitinga I, Damoiseaux JG, van Rooijen N, et al. Liposome mediated affection of monocytes. Immunobiology 1992;185:11-9
  • Rossi CP, Delcroix M, Huitinga I, et al. Role of macrophages during Theiler's virus infection. J Virol 1997;71:3336-40
  • Copland MJ, Baird MA, Rades T, et al. Liposomal delivery of antigen to human dendritic cells. Vaccine 2003;21:883-90
  • Kole L, Das L, Das PK. Synergistic effect of interferon-gamma and mannosylated liposome-incorporated doxorubicin in the therapy of experimental visceral leishmaniasis. J Infect Dis 1999;180:811-20
  • Vyas SP, Sihorkar V, Jain S. Mannosylated liposomes for bio-film targeting. Int J Pharm 2007;330:6-13
  • Fukasawa M, Shimizu Y, Shikata K, et al. Liposome oligomannose-coated with neoglycolipid, a new candidate for a safe adjuvant for induction of CD8+ cytotoxic T lymphocytes. FEBS Lett 1998;441:353-6
  • Kawakami S, Sato A, Nishikawa M, et al. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 2000;7:292-9
  • Zysk G, Bruck W, Huitinga I, et al. Elimination of blood-derived macrophages inhibits the release of interleukin-1 and the entry of leukocytes into the cerebrospinal fluid in experimental pneumococcal meningitis. J Neuroimmunol 1997;73:77-80
  • Mandal AK, Sinha J, Mandal S, et al. Targeting of liposomal flavonoid to liver in combating hepatocellular oxidative damage. Drug Deliv 2002;9:181-5
  • Higuchi Y, Kawakami S, Oka M, et al. Intravenous administration of mannosylated cationic liposome/NFkappaB decoy complexes effectively prevent LPS-induced cytokine production in a murine liver failure model. FEBS Lett 2006;580:3706-14
  • Wijagkanalan W, Kawakami S, Takenaga M, et al. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 2008;125:121-30
  • Opanasopit P, Sakai M, Nishikawa M, et al. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J Control Release 2002;80:283-94
  • Lu Y, Kawakami S, Yamashita F, Hashida M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials 2007;28:3255-62
  • McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000;406:735-8
  • Harb OS, Gao LY, Abu Kwaik Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2000;2:251-65
  • Maeda N, Nigou J, Herrmann JL, et al. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 2003;278:5513-6
  • Flynn JL, Chan J. Immunology of tuberculosis. Ann Rev Immunol 2001;19:93-129
  • Chono S, Tanino T, Seki T, Morimoto K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J Drug Target 2006;14:557-66
  • Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol 2007;59:75-80
  • Wijagkanalan W, Kawakami S, Takenaga M, et al. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 2008;125:121-30
  • Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 2008;127:50-8
  • Mitra M, Mandal AK, Chatterjee TK, Das N. Targeting of mannosylated liposome incorporated benzyl derivative of Penicillium nigricans derived compound MT81 to reticuloendothelial systems for the treatment of visceral leishmaniasis. J Drug Target 2005;13:285-93
  • Davidson RN, Martino L, Di Gradoni L, Giacchino R. Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis. Q J Med 1994;87:75-81
  • Raay B, Medda S, Mukhopadhyay S, Basu MK. Targeting of piperine intercalated in mannose-coated liposomes in experimental leishmaniasis. Indian J Biochem Biophys 1999;36:248-51
  • Sinha J, Mukhopadhyay S, Das N, Basu MK. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv 2000;7:209-13
  • Jodar L, Feavers IM, Salisbury D, Granoff DM. Development of vaccines against meningococcal disease. Lancet 2002;359:1499-508
  • Rosenqvist E, Hoiby EA, Wedege E, et al. Human antibody responses to meningococcal outer membrane antigens after three doses of the Norwegian group B meningococcal vaccine. Infect Immun 1995;63:4642-52
  • Arigita C, Kersten GF, Hazendonk T, et al. Restored functional immunogenicity of purified meningococcal PorA by incorporation into liposomes. Vaccine 2003;21:950-60
  • Shimizu Y, Takagi H, Nakayama T, et al. Intraperitoneal immunization with oligomannose-coated liposome-entrapped soluble leishmanial antigen induces antigen-specific T-helper type immune response in BALB/c mice through uptake by peritoneal macrophages. Parasite Immunol 2007;29:229-39
  • Shimizu Y, Yamakami K, Gomi T, et al. Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorg Med Chem 2003;11:1191-5
  • Sprott GD, Dicaire CJ, Gurnani K, et al. Activation of dendritic cells by liposomes prepared from phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette-Guerin and adjuvant activity in vivo. Infect Immun 2004;72:5235-46
  • Mizuochi T, Loveless RW, Lawson AM, et al. A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex-type as well as high mannose-type oligosaccharide chains. J Biol Chem 1989;264:13834-9
  • Mizuochi T. Preparation of oligosaccharide probes (neoglycolipids) and their application to elucidation of fundamental role of carbohydrate moiety of glycoproteins. Trends Glycosci Glycotechnol 1991;3:435-7
  • Noguchi Y, Noguchi T, Sato T, et al. Priming for in vitro and in vivo anti-human T lymphotropic virus type 1 cellular immunity by virus-related protein reconstituted into liposome. J Immunol 1991;146:3599-603
  • Toda S, Ishii N, Okada E, et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-gamma antibody. Immunology 1997;92:111-7
  • Sasaki S, Fukushima J, Arai H, et al. Human immunodeficiency virus type-1-specific immune responses induced by DNA vaccination are greatly enhanced by mannan-coated diC14-amidine. Eur J Immunol 1997;27:3121-9
  • White K, Rades T, Kearns P, et al. Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharm Res 2006;23:1473-81
  • Mahnke K, Guo M, Lee S, et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000;151:673-83
  • Bonifaz L, Bonnyay D, Mahnke K, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002;196:1627-38
  • Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate pulsed dendritic cells. Nat Med 1998;4:328-32
  • Rodriguez F, An LL, Harkins S, et al. DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. J Virol 1998;72:5174-81
  • Tanaka M, Kaneda Y, Fujii S, et al. Induction of a systemic immune response by a polyvalent melanoma-associated antigen DNA vaccine for prevention and treatment of malignant melanoma. Mol Ther 2002;5:291-9
  • Nishimura T, Nakui M, Sato M, et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol 2000;46:S52-61
  • Hashida M, Kawakami S, Yamashita F. Lipid carrier systems for targeted drug and gene delivery. Chem Pharm Bull 2005;53:871-80
  • Sato A, Kawakami S, Yamada M, et al. Enhanced gene transfection in macrophages using mannosylated cationic liposome-polyethylenimine-plasmid DNA complexes. J Drug Target 2001;9:201-7
  • Kawakami S, Hattori Y, Lu Y, et al. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie 2004;59:405-8
  • Yamada M, Nishikawa M, Kawakami S, et al. Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release 2004;98:157-67
  • Hattori Y, Kawakami S, Suzuki S, et al. Enhancement of immune responses by dNA vaccination through targeted gene delivery using mannosylated cationic liposome formulations following intravenous administration in mice. Biochem Biophys Res Commun 2004;317:992-9
  • Bachhawat BK, Das PK. Ghosh P. Preparation of glycoside-bearing liposomes for targeting. In: Gregoriadis G, editor, Liposome technology. Volume III. CRC Press, Boca Raton; 1984. p. 117-24
  • Datta N, Mukherjee S, Das L, Das PK. Targeting of immunostimulatory DNA cures experimental visceral leishmaniasis through nitric oxide up-regulation and T cell activation. Eur J Immunol 2003;33:1508-18
  • Kuramoto Y, Kawakami S, Zhou S, et al. Use of mannosylated cationic liposomes/ immunostimulatory CpG DNA complex for effective inhibition of peritoneal dissemination in mice. J Gene Med 2008;10:392-9
  • Salman HH, Gamazo C, Campanero MA, Irache JM. Bioadhesive mannosylated nanoparticles for oral drug delivery. J Nanosci Nanotechnol 2006;6:3203-9
  • Horak D, Babic M, Jendelova P, et al. D-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 2007;18:635-44
  • Yeeprae W, Kawakami S, Higuchi Y, et al. Biodistribution characteristics of mannosylated and fucosylated O/W emulsions in mice. J Drug Target 2005;13:479-87
  • Joralemon MJ, Murthy KS, Remsen EE, et al. Synthesis, characterization, and bioavailability of mannosylated shell cross-linked nanoparticles. Biomacromolecules 2004;5:903-13
  • Kim TH, Nah JW, Cho MH, et al. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol 2006;6:2796-803
  • Kim TH, Jin H, Kim HW, et al. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 2006;5:1723-32
  • Jain S, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Liposome Res 2006;16:331-45
  • Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol Lett 2005;101:41-9
  • Yeeprae W, Kawakami S, Yamashita F, Hashida M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J Control Release 2006;114:193-201
  • Salman H, Gomez S, Gamazo C, et al. Microorganism-like nanoparticles for oral antigen delivery. J Drug Del Sci Technol 2008;18:31-9
  • Apostolopoulos V, Osinski C, McKenzie IF. MUC1 cross-reactive Gal alpha (1,3) Gal antibodies in humans switch immune responses from cellular to humoral. Nat Med 1998;4:315-20
  • McKenzie IFC, Apostolopoulos V, Plebanski M, et al. Aspects of cancer immunotherapy. Immunol Cell Biol 2003;81:79-85
  • Loveland BE, Zhao A, White S, et al. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res 2006;12:869-77
  • Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan–MUC1 ISRCTN71711835. Breast Cancer Res 2006;8:R27
  • Mayer A, Francis RJ, Sharma SK, et al. A phase I study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti carcinoembryonic antigen antibody–enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 2006;12:6509-16
  • Lisziewicz J, Rosenberg E, Lieberman J, et al. Control of HIV despite the discontinuation of antiretroviral therapy. N Engl J Med 1999;340:1683-4
  • Lisziewicz J, Gabrilovich DI, Varga G, et al. Induction of potent human immunodeficiency virus type 1-specific T-cell-restricted immunity by genetically modified dendritic cells. J Virol 2001;75:7621-8
  • Lisziewicz J, Bakare N, Lori F. Therapeutic vaccination for future management of HIV/AIDS. Vaccine 2003;21:620-3
  • Lisziewicz J, Whitman L, Varga G, et al. DermaVir: a novel topical vaccine for HIV/AIDS. J Invest Dermatol 2005;124:160-9
  • Lori F, Calarota SA, Lisziewicz J. Nanochemistry-based immunotherapy for HIV-1. Curr Med Chem 2007;14:1911-9
  • Lori F, Trocio J, Bakare N, et al. DermaVir: a novel HIV immunization technology. Vaccine 2005;23:2030-4
  • Genetic Immunity, Clinical Trials. Available from: http://www.geneticimmunity.com/GI0401.html [Last accessed 10 March 2008]
  • Sarkar S, Das N. Mannosylated liposomal flavonoid in combating age-related ischemia–reperfusion induced oxidative damage in rat brain. Mech Ageing Dev 2006;127:391-7
  • Moonis M, Ahmad I, Bachhawat BK. Mannosylated liposomes as carriers for hamycin in the treatment of experimental aspergillosis in Balb/C mice. J Drug Target 1993;1:147-55
  • Vyas SP, Katare YK, Mishra V, Sihorkar V, Ligand directed macrophage targeting of amphotericin B loaded liposomes. Int J Pharm 2000;210:1-14
  • Hattori Y, Kawakami S, Lu Y, et al. Enhanced DNA vaccine potency by mannosylated lipoplex after intraperitoneal administration. J Gene Med 2006;8:824-34
  • Hattori Y, Kawakami S, Nakamura K, et al. Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route. J Pharmacol Exp Ther 2006;318:828-34
  • Hattori Y, Suzuki S, Kawakami S, et al. The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. J Control Release 2005;108:484-95

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.