476
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Evolution of phage display: from bioactive peptides to bioselective nanomaterials

Pages 825-836 | Published online: 19 Aug 2008

Bibliography

  • Smith GP. 1988 – A year of discovery. In: Kay BK, Winter J, McCafferty, editors, Phage display of peptides and proteins. San Diego, London, Boston, New York, Sydney, Tokyo, Toronto: Academic Press; 1996. p. xvii-xix
  • Smith GP, Petrenko VA. Phage display. Chem Rev 1997;97(2):391-410
  • Geysen HM, Meloen RH, Barteling SJ. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 1984;81(13):3998-4002
  • Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 1985;82(15):5131-5
  • Houghten RA. Combinatorial libraries. Finding the needle in the haystack. Curr Biol 1994;4(6):564-7
  • Petrenko VA, Smith GP. Vectors and modes of display. In: Sidhu SS, editor, Phage display in biotechnology and drug discovery. Bo Raton, FL, USA: CRC Press, Taylor & Francis Group; 2005. p. 714
  • Lowman HB. Bacteriophage display and discovery of peptide leads for drug development. Ann Rev Biophys Biomol Struct 1997;26:401-24
  • Ladner RC, Sato AK, Gorzelany J, de Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today 2004;9(12):525-9
  • Bradbury ARM, Marks JD. Phage antibody libraries. In: Clackson T, Lowman HB, editors, Phage display a practical approach. Oxford University Press; 2004
  • Suci PA, Berglund DL, Liepold L, et al. High-density targeting of a viral multifunctional nanoplatform to a pathogenic, biofilm-forming bacterium. Chem Biol 2007;14(4):387-98
  • Brumfield S, Willits D, Tang L, et al. Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 2004;85(Pt 4):1049-53
  • Klem MT, Willits D, Young M, Douglas T. 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. J Am Chem Soc 2003;125(36):10806-7
  • Manchester M, Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 2006;58(14):1505-22
  • Singh P, MJ G, Manchester M. Viruses and their uses in nanotechnology. Drug Dev Res 2006;67:23-41
  • Ilyichev AA, Minenkova OO, Tatkov SI, et al. Construction of M13 viable bacteriophage with the insert of foreign peptides into the major coat protein. Doklady Biochemistry (ProcAcad Sci USSR)-EnglTr 1989;307:196-8
  • Russel M, Model P. Filamentous phage. In: Calendar R, editor, The bacteriophages. 2nd edition. Oxford University Press; 2006. p. 146-60
  • Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 1991;220(4):821-7
  • Felici F, Castagnoli L, Musacchio A, et al. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol 1991;222(2):301-10
  • Markland W, Roberts BL, Saxena MJ, et al. Design, construction and function of a multicopy display vector using fusions to the major coat protein of bacteriophage M13. Gene 1991;109(1):13-9
  • Minenkova OO, Ilyichev AA, Kishchenko GP, Petrenko VA. Design of specific immunogens using filamentous phage as the carrier. Gene 1993;128(1):85-8
  • Fang J, Wang G, Yang Q, et al. The potential of phage display virions expressing malignant tumor specific antigen MAGE-A1 epitope in murine model. Vaccine 2005;23(40):4860-6
  • Wang G, Sun M, Fang J, et al. Protective immune responses against systemic candidiasis mediated by phage-displayed specific epitope of Candida albicans heat shock protein 90 in C57BL/6J mice. Vaccine 2006;24(35-36):6065-73
  • Yang Q, Su QP, Wang GY, et al. Production of hybrid phage displaying secreted aspartyl proteinase epitope of Candida albicans and its application for the diagnosis of disseminated candidiasis. Mycoses 2007;50(3):165-71
  • Wu Y, Wan Y, Bian J, et al. Phage display particles expressing tumor-specific antigens induce preventive and therapeutic anti-tumor immunity in murine p815 model. Int J Cancer 2002;98(5):748-53
  • Wan Y, Wu Y, Bian J, et al. Induction of hepatitis B virus-specific cytotoxic T lymphocytes response in vivo by filamentous phage display vaccine. Vaccine 2001;19(20-22):2918-23
  • Guardiola J, De Berardinis P, Sartorius R, et al. Phage display of epitopes from HIV-1 elicits strong cytolytic responses in vitro and in vivo. Adv Exp Med Biol 2001;495:291-8
  • Manoutcharian K, Diaz-Orea A, Gevorkian G, et al. Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Vet Immunol Immunopathol 2004;99(1-2):11-24
  • Petrenko VA, Smith GP, Gong X, Quinn T. A library of organic landscapes on filamentous phage. Protein Eng 1996;9(9):797-801
  • Smith GP, Gingrich TR. Hydroxyapatite chromatography of phage-display virions. Biotechniques 2005;39(6):879-84
  • Brigati JR, Samoylova TI, Jayanna PK, Petrenko VA. Phage display technique for generating peptide reagents. In: Dunn BM, et al, editors. Current Protocols in Protein Science. John Wiley & Sons; 2008. Chapter 18:Unit 18.9
  • Petrenko VA, Smith GP. Phages from landscape libraries as substitute antibodies. Protein Eng 2000;13(8):589-92
  • Samoylova TI, Petrenko VA, Morrison NE, et al. Phage probes for malignant glial cells. Mol Cancer Ther 2003;2(11):1129-37
  • Kouzmitcheva GA, Petrenko VA, Smith GP. Identifying diagnostic peptides for lyme disease through epitope discovery. Clin Diagn Lab Immunol 2001;8(1):150-60
  • Lee SK, Yun DS, Belcher AM. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Biomacromolecules 2006;7(1):14-7
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9(2):E128-47
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 2006;1(3):297-315
  • Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990;50(3 Suppl):814-9
  • Fujimori K, Covell DG, Fletcher JE, Weinstein JN. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab′)2, and Fab in tumors. Cancer Res 1989;49(20):5656-63
  • Adams GP, Schier R, McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res 2001;61(12):4750-5
  • Adams GP, Schier R. Generating improved single-chain Fv molecules for tumor targeting. J Immunol Methods 1999;231(1-2):249-60
  • Cortez-Retamozo V, Backmann N, Senter PD, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 2004;64(8):2853-7
  • Reilly RM, Sandhu J, Alvarez-Diez TM, et al. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet 1995;28(2):126-42
  • Craig R, Li S. Function and molecular mechanism of tumor-targeted peptides for delivering therapeutic genes and chemical drugs. Mini Rev Med Chem 2006;6:757-64
  • Krumpe L, Mori T. The use of phage-displayed peptide libraries to develop tumor-targeting drugs. Int J Peptide Res Ther 2006;12:79-91
  • Rezler EM, Khan DR, Tu R, et al. Peptide-mediated targeting of liposomes to tumor cells. Methods Mol Biol 2007;386:269-98
  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279(5349):377-80
  • Arap W, Haedicke W, Bernasconi M, et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 2002;99(3):1527-31
  • Nobs L, Buchegger F, Gurny R, Allemann E. Coupling methods to obtain ligand-targeted liposomes and nanoparticles. Drugs Pharm Sci 2006;158:123-48
  • Nellis DF, Ekstrom DL, Kirpotin DB, et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog 2005;21(1):205-20
  • Nellis DF, Kirpotin DB, Janini GM, et al. Preclinical manufacture of anti-her2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol Prog 2005;21(1):221-32
  • Petrenko VA. Phage-derived bioselective nanovehicles for drug and gene delivery. Nanotechnology Conference and Trade Show. Santa Clara; 2007. p. 703-6
  • Jayanna PK, Torchilin VP, Petrenko VA. Liposomes targeted by fusion phage proteins [submitted]. Nanomedicine
  • Shukla GS, Krag DN. Phage display selection for cell-specific ligands: Development of a screening procedure suitable for small tumor specimens. J Drug Target 2005;13(1):7-18
  • Krag DN, Shukla GS, Shen G-P, et al. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res 2006;66(15):7724-33
  • Shukla GS, Krag DN. Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncol Rep 2005;13(4):757-64
  • Krag DN, Fuller SP, Oligino L, et al. Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother Pharmacol 2002;50(4):325-32
  • Larocca D, Witte A, Johnson W, et al. Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum Gene Ther 1998;9(16):2393-9
  • Poul MA, Marks JD. Targeted gene delivery to mammalian cells by filamentous bacteriophage. J Mol Biol 1999;288(2):203-11
  • Kassner PD, Burg MA, Baird A, Larocca D. Genetic selection of phage engineered for receptor-mediated gene transfer to mammalian cells. Biochem Biophys Res Commun 1999;264(3):921-8
  • Ivanenkov VV, Felici F, Menon AG. Targeted delivery of multivalent phage display vectors into mammalian cells. Biochim Biophys Acta 1999;1448(3):463-72
  • Larocca D, Kassner PD, Witte A, et al. Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J 1999;13(6):727-34
  • Burg M, Ravey EP, Gonzales M, et al. Selection of internalizing ligand-display phage using rolling circle amplification for phage recovery. DNA Cell Biol 2004;23(7):457-62
  • Barrow PA, Soothill JS. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 1997;5(7):268-71
  • Monaci P, Urbanelli L, Fontana L. Phage as gene delivery vectors. Curr Opin Mol Ther 2001;3(2):159-69
  • Sergeeva A, Kolonin MG, Molldrem JJ, et al. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006;58(15):1622-54
  • Daniells S. FDA approves viruses as food additive for meats. FOOD USA. Navigatorcom, 23-Aug-2006. Available from: http://foodproductiondaily.com/news/ng.asp?id=70066.
  • Ricks D. Spray to quell E. coli. AM New York; 2007
  • Mount JD, Samoylova TI, Morrison NE, et al. Cell targeted phagemid rescued by preselected landscape phage. Gene 2004;341:59-65
  • Jiang H, Cai XM, Shi BZ, et al. Development of efficient RNA interference system using EGF-displaying phagemid particles. Acta Pharmacol Sin 2008;29(4):437-42
  • Li Z, Jiang H, Zhang J, Gu J. Cell-targeted phagemid particles preparation using Escherichia coli bearing ligand-pIII encoding helper phage genome. Biotechniques 2006;41(6):706-7
  • Li Z, Zhang J, Zhao R, et al. Preparation of peptide-targeted phagemid particles using a protein III-modified helper phage. Biotechniques 2005;39(4):493-97
  • Hajitou A, Trepel M, Lilley CE, et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 2006;125(2):385-98
  • Hajitou A, Lev DC, Hannay JA, et al. A preclinical model for predicting drug response in soft-tissue sarcoma with targeted AAVP molecular imaging. Proc Natl Acad Sci USA 2008;105(11):4471-6
  • Contag CH. In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Ann Rev Pathol 2007;2:277-305
  • Stephen RM, Gillies RJ. Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res 2007;24(6):1172-85
  • Weissleder R. Molecular imaging in cancer. Science 2006;312(5777):1168-71
  • Ludtke JJ, Sololoff AV, Wong SC, et al. In vivo selection and validation of liver-specific ligands using a new T7 phage peptide display system. Drug Deliv 2007;14(6):357-69
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996;380(6572):364-6
  • Rajotte D, Arap W, Hagedorn M, et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998;102(2):430-7
  • Valadon P, Garnett JD, Testa JE, et al. Screening phage display libraries for organ-specific vascular immunotargeting in vivo. Proc Natl Acad Sci USA 2006;103(2):407-12
  • Kelly K, Alencar H, Funovics M, et al. Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res 2004;64(17):6247-51
  • Kelly KA, Clemons PA, Yu AM, Weissleder R. High-throughput identification of phage-derived imaging agents. Mol Imaging 2006;5(1):24-30
  • Kelly KA, Waterman P, Weissleder R. In vivo imaging of molecularly targeted phage. Neoplasia 2006;8(12):1011-8
  • Newton JR, Kelly KA, Mahmood U, et al. In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia 2006;8(9):772-80
  • Newton JR, Miao Y, Deutscher SL, Quinn TP. Melanoma imaging with pretargeted bivalent bacteriophage. J Nucl Med 2007;48(3):429-36
  • Segers J, Laumonier C, Burtea C, et al. From phage display to magnetophage, a new tool for magnetic resonance molecular imaging. Bioconjug Chem 2007;18(4):1251-8
  • Petrenko VA, Sorokulova IB. Detection of biological threats. A challenge for directed molecular evolution. J Microbiol Methods 2004;58(2):147-68
  • Petrenko VA, Vodyanoy VJ. Phage display for detection of biological threat agents. J Microbiol Methods 2003;53(2):253-62
  • Yang LM, Diaz JE, McIntire TM, et al. Covalent virus layer for mass-based biosensing. Anal Chem 2008;80(4):933-43
  • Yang LM, Tam PY, Murray BJ, et al. Virus electrodes for universal biodetection. Anal Chem 2006;78(10):3265-70
  • Wan J, Johnson M, Guntupalli R, et al. Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sensors Actuators B 2007;127:559-66
  • Fu L, Li S, Zhang K, et al. Magnetostrictive microcantilever as an advanced transducer for biosensors. Sensors J 2007;7:2929-41
  • Johnson ML, Wan J, Huang S, et al. A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles. Sensors Actuators A Phys 2008;144(1):38-47
  • Nanduri V, Balasubramanian S, Sista S, et al. Highly sensitive phage-based biosensor for the detection of β-galactosidase. Anal Chim Acta 2007;589:166-72
  • Petrenko VA. Landscape phage as a molecular recognition interface for detection devices. Microelectron J 2008;39(2):202-7
  • Olsen EV, Sykora JC, Sorokulova IB, et al. Phage fusion proteins as bioselective receptors for piezoelectric sensors. ECS Transactions 2007;2(19):9-25
  • Olsen EV, Sorokulova IB, Petrenko VA, et al. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosens Bioelectron 2006;21(8):1434-42
  • Nanduri V, Sorokulova IB, Samoylov AM, et al. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens Bioelectron 2007;22(6):986-92
  • Lakshmanan RS, Guntupalli R, Hu J, et al. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. J Microbiol Methods 2007;71(1):55-60
  • Wan J, Shu H, Huang S, et al. Phage-based magnetoelastic wireless biosensors for detecting bacillus anthracis spores. IEEE Sensors J 2007;7(3)
  • Draper WM. Biological monitoring: exquisite research probes, risk assessment, and routine exposure measurement. Anal Chem 2001;73(12):2745-60
  • Brigati JR, Petrenko VA. Thermostability of landscape phage probes. Anal Bioanal Chem 2005;382(6):1346-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.