392
Views
37
CrossRef citations to date
0
Altmetric
Review

Computational approaches to predict drug metabolism

, , &
Pages 15-27 | Published online: 19 Jan 2009

Bibliography

  • Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003;2:192-204
  • Jenkins KM, Angeles R, Quintos MT, et al. Automated high throughput ADME assays for metabolic stability and cytochrome P450 inhibition profiling of combinatorial libraries. J Pharm Biomed Anal 2004;34:989-1004
  • Ansede JH, Thakker DR. High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism. J Pharm Sci 2004;93:239-55
  • Zlokarnik G, Grootenhuis PD, Watson JB. High throughput P450 inhibition screens in early drug discovery. Drug Discov Today 2005;10:1443-50
  • Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007;1770:489-94
  • Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999;286:487-91
  • Boobis A, Gundert-Remy U, Kremers P, et al. In silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur J Pharm Sci 2002;17:183-93
  • Madden JC, Cronin MT. Structure-based methods for the prediction of drug metabolism. Expert Opin Drug Metab Toxicol 2006;2:545-57
  • Kumar GN, Surapaneni S. Role of drug metabolism in drug discovery and development. Med Res Rev 2001;21:397-411
  • Coleman MD. Human drug metabolism: an introduction; John Wiley and Sons. New York; 2006
  • Woolf TF. Handbook of drug metabolism; Informa Healthcare; 1999
  • Lee JS, Obach RS, Fisher MB. Drug metabolizing enzymes: cytochrome P450 and other enzymes in drug discovery and development; Taylor and Francis Ltd.; 2003
  • Stjernschantz E, Vermeulen NP, Oostenbrink C. Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert Opin Drug Metab Toxicol 2008;4:513-27
  • Fuhr U. Improvement in the handling of drug-drug interactions. Eur J Clin Pharmacol 2008;64:167-71
  • Mackenzie PI, Owens IS, Burchell B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenet 1997;7:255-69
  • Masimirembwa CM, Bredberg U, Andersson TB. Metabolic stability for drug discovery and development: pharmacokinetic and biochemical challenges. Clin Pharmacokinet 2003;42:515-28
  • Tang W, Wang RW, Lu AY. Utility of recombinant cytochrome p450 enzymes: a drug metabolism perspective. Curr Drug Metab 2005;6:503-17
  • Gomez-Lechon MJ, Donato MT, Castell JV, et al. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 2004;5:443-62
  • Cariello NF, Wilson JD, Britt BH, et al. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive estimate of risk from existing knowledge. Toxicity prediction by komputer assisted technology. Mutagenesis 2002;17:321-9
  • Greene N, Judson PN, Langowski JJ, et al. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, STAR and METEOR. SAR QSAR Environ Res 1999;10:299-314
  • Livingstone DJ. The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 2000;40:195-209
  • Todeschini R, Consonni V. Handbook of molecular descriptors; Wiley-Vch, Weinheim; 2000
  • De Groot MJ, Kirton SB, Sutcliffe MJ. In silico methods for predicting ligand binding determinants of cytochromes P450. Curr Top Med Chem 2004;4:1803-24
  • Ekins S, De Groot MJ, Jones JP. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos 2001;29:936-44
  • Fox T, Kriegl JM. Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem 2006;6:1579-91
  • Hansch C, Mekapati SB, Kurup A, et al. QSAR of cytochrome P450.501. Drug Metab Rev 2004;36:105-56
  • Jalaie M, Arimoto R, Gifford E, et al. Prediction of drug-like molecular properties: modeling cytochrome p450 interactions. Methods Mol Biol 2004;275:449-520
  • Van De Waterbeemd H., editior, Advanced computer-assisted techniques in drug discovery; VCH Weinheim; 1994
  • Catalyst, Accelrys Software Inc, San Diego, CA, USA
  • Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model 2002;20:269-76
  • Eriksson L, Jaworska J, Worth AP, et al. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 2003;111:1361-75
  • Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim 2005;33:445-59
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 2003;22:69-77
  • He L, Jurs PC. Assessing the reliability of a QSAR model's predictions. J Mol Graph Model 2005;23:503-23
  • Kirton SB, Murray CW, Verdonk ML, et al. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Proteins 2005;58:836-44
  • Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 2002;41:2644-76
  • Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997;267:727-48
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177-96
  • Sotriffer CA, Sanschagrin P, Matter H, et al. SFCscore: Scoring functions for affinity prediction of protein-ligand complexes. Proteins 2008;73:395-419
  • Bruice TC. Computational approaches: reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chem Rev 2006;106:3119-39
  • Van Der Vaart A, Rez D, Merz J. Critical assessment of the performance of the semiempirical divide and conquer method for single point calculations and geometry optimizations of large chemical systems. J Chem Phys 2000;113:10512-23
  • Heady L, Fernandez-Serra M, Mancera RL, et al. Novel structural features of CDK inhibition revealed by an ab initio computational method combined with dynamic simulations. J Med Chem 2006;49:5141-53
  • Senn HM, Thiel W. QM/MM studies of enzymes. Curr Opin Chem Biol 2007;11:182-7
  • Bathelt CM, Mulholland AJ, Harvey JN. QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J Phys Chem A 2008; In press
  • Jensen BF, Sorensen MD, Kissmeyer AM, et al. Prediction of in vitro metabolic stability of calcitriol analogs by QSAR. J Comput Aided Mol Des 2003;17:849-59
  • Lee PH, Cucurull-Sanchez L, Lu J, et al. Development of in silico models for human liver microsomal stability. J Comput Aided Mol Des 2007;21:665-73
  • Sakiyama Y, Yuki H, Moriya T, et al. Predicting human liver microsomal stability with machine learning techniques. J Mol Graph Model 2008;26:907-15
  • Schwaighofer A, Schroeter T, Mika S, et al. A probabilistic approach to classifying metabolic stability. J Chem Inf Model 2008;48:785-96
  • Rasmussen CE, Williams CKI. Gaussian processes for machine learning. MIT Press: Cambridge, MA; 2006
  • Neal RM. Regression and classification using Gaussian process priors. Bayesian Statistics 1999;6:475-501
  • DRAGON for Linux (Software for Molecular Descriptor Calculations), Talete srl, Milano, Italy
  • Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model 2008;26:1315-26
  • Krejsa CM, Horvath D, Rogalski SL, et al. Predicting ADME properties and side effects: the BioPrint approach. Curr Opin Drug Discov Devel 2003;6:470-80
  • Ekins S, Andreyev S, Ryabov A, et al. A combined approach to drug metabolism and toxicity assessment. Drug Metab Dispos 2006;34:495-503
  • Ekins S, Nikolsky Y, Nikolskaya T. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol Sci 2005;26:202-9
  • Embrechts MJ, Ekins S. Classification of metabolites with kernel-partial least squares (K-PLS). Drug Metab Dispos 2007;35:325-7
  • Erhardt PW. A human drug metabolism database: potential roles in the quantitative predictions of drug metabolism and metabolism-related drug-drug interactions. Curr Drug Metab 2003;4:411-22
  • Metabolism Database, Accelrys Software Inc., San Diego, CA, USA
  • Metabolite Database, MDL Information Systems Inc., San Ramon, CA, USA
  • Button WG, Judson PN, Long A, et al. Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J Chem Inf Comput Sci 2003;43:1371-7
  • Testa B, Balmat AL, Long A, et al. Predicting drug metabolism – an evaluation of the expert system METEOR. Chem Biodivers 2005;2:872-85
  • Klopman G, Dimayuga M, Talafous J. META. 1. A program for the evaluation of metabolic transformation of chemicals. J Chem Inf Comput Sci 1994;34:1320-5
  • Talafous J, Sayre LM, Mieyal JJ, et al. META. 2. A dictionary model of mammalian xenobiotic metabolism. J Chem Inf Comput Sci 1994;34:1326-33
  • Klopman G, Tu M, Talafous J. META. 3. A genetic algorithm for metabolic transform priorities optimization. J Chem Inf Comput Sci 1997;37:329-34
  • Darvas F. Predicting metabolic pathways by logic programming. J Mol Graph 1988;6:80-6
  • Korolev D, Balakin KV, Nikolsky Y, et al. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach. J Med Chem 2003;46:3631-43
  • Ekins S, Andreyev S, Ryabov A, et al. Computational prediction of human drug metabolism. Expert Opin Drug Metab Toxicol 2005;1:303-24
  • Banik GM. In silico ADME-Tox prediction: The more, the merrier. Curr Drug Disc 2004; 31-4
  • Boyer S, Arnby CH, Carlsson L, et al. Reaction site mapping of xenobiotic biotransformations. J Chem Inf Model 2007;47:583-90
  • Ridder L, Wagener M. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. Chem Med Chem 2008;3:821-32
  • Cruciani G, Carosati E, De Boeck B, et al. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 2005;48:6970-9
  • Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 1985;28:849-57
  • Ahlström MM, Ridderström M, Zamora I. CYP2C9 structure-metabolism relationships: substrates, inhibitors, and metabolites. J Med Chem 2007;50:5382-91
  • Ahlström MM, Ridderström M, Zamora I, et al. CYP2C9 structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors. J Med Chem 2007;50:4444-52
  • Caron G, Ermondi G, Testa B. Predicting the oxidative metabolism of statins: an application of the MetaSite algorithm. Pharm Res 2007;24:480-501
  • Zhou D, Afzelius L, Grimm SW, et al. Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metab Dispos 2006;34:976-83
  • Kjellander B, Masimirembwa CM, Zamora I. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach. J Chem Inf Model 2007;47:1234-47
  • Göller A. H, Hennemann M, Hillisch, A. et al. CypScore – a quantum chemistry based approach for the prediction of likely sites of P450-mediated metabolism. 4th Joint Sheffield Conference on Chemoinformatics
  • Clark T, Alex A, Beck B, et al. VAMP 8.2, Erlangen 2002; available from Accelrys Inc., San Diego, USA
  • Singh SB, Shen LQ, Walker MJ, et al. A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. J Med Chem 2003;46:1330-6
  • Seifert A, Tatzel S, Schmid RD, et al. Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins 2006;64:147-55
  • Williams PA, Cosme J, Ward A, et al. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003;424:464-8
  • Sykes MJ, McKinnon RA, Miners JO. Prediction of metabolism by cytochrome P450 2C9: alignment and docking studies of a validated database of substrates. J Med Chem 2008;51:780-91
  • ROCS (Rapid Overlay of Chemical Structures) version 2.2, Openeye Scientific Software, Santa Fe, NM, USA.
  • Shaik S, Cohen S, De Visser SP, et al. The “Rebound Controversy”: an overview and theoretical modeling of the rebound step in C-H hydroxylation by cytochrome P450. Eur J Med Chem 2004;207-26
  • Ogliaro F, Harris N, Cohen S, et al. A model ‘rebound’ mechanism of hydroxylation by cytochrome P450: stepwise and effectively concerted pathways, and their reactivity patterns. J Am Chem Soc 2000;122:8977-89
  • Collins JR, Loew GH. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam. J Biol Chem 1988;263:3164-70
  • Jones JP, Korzekwa KR. Predicting the rates and regioselectivity of reactions mediated by the P450 superfamily. Methods Enzymol 1996;272:326-35
  • Korzekwa KR, Jones JP, Gillette JR. Theoretical studies on cytochrome P-450 mediated hydroxylation: A predictive model for hydrogen atom abstractions. J Am Chem Soc 1990;112:7042-6
  • Jones JP, Mysinger M, Korzekwa KR. Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction. Drug Metab Dispos 2002;30:7-12
  • Beck ME. Do Fukui function maxima relate to sites of metabolism? A critical case study. J Chem Inf Model 2005;45:273-82
  • De Groot MJ, Donne-Op Den Kelder GM, Commandeur JN, et al. Metabolite predictions for para-substituted anisoles based on ab initio complete active space self-consistent field calculations. Chem Res Toxicol 1995;8:437-43
  • Pudzianowski AT, Loew GH. Quantum-chemical studies of model cytochrome P450 hydrocarbon oxidation mechanisms. 1. A MINDO/3 study of hydroxylation and epoxidation pathways for methane and ethylene. J Am Chem Soc 1980;102:5443-9
  • Higgins L, Korzekwa KR, Rao S, et al. An assessment of the reaction energetics for cytochrome P450-mediated reactions. Arch Biochem Biophys 2001;385:220-30
  • Dowers TS, Rock DA, Rock DA, et al. An analysis of the regioselectivity of aromatic hydroxylation and N-oxygenation by cytochrome P450 enzymes. Drug Metab Dispos 2004;32:328-32
  • Park JY, Harris D. Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics, and density functional theoretical calculations. J Med Chem 2003;46:1645-60
  • Korzekwa KR, Grogan J, De Vito S, et al. Electronic models for cytochrome P450 oxidations. Adv Exp Med Biol 1996;387:361-9
  • Shaik S, Kumar D, De Visser SP, et al. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 2005;105:2279-328
  • Olsen L, Rydberg P, Rod TH, et al. Prediction of activation energies for hydrogen abstraction by cytochrome p450. J Med Chem 2006;49:6489-99
  • Kamachi T, Yoshizawa K. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450. J Am Chem Soc 2003;125:4652-61
  • Schöneboom JC, Cohen S, Lin H, et al. Quantum mechanical/molecular mechanical investigation of the mechanism of C-H hydroxylation of camphor by cytochrome P450cam: theory supports a two-state rebound mechanism. J Am Chem Soc 2004;126:4017-34
  • Bathelt CM, Zurek J, Mulholland AJ, et al. Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling. J Am Chem Soc 2005;127:12900-8
  • Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 1985;25:64-73
  • Sheridan RP, Nachbar RB, Bush BL. Extending the trend vector: the trend matrix and sample-based partial least squares. J Comput Aided Mol Des 1994;8:323-40
  • Oh WS, Kim DN, Jung J, et al. New combined model for the prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism. J Chem Inf Model 2008;48:591-601
  • Balakin KV, Ekins S, Bugrim A, et al. Quantitative structure-metabolism relationship modeling of metabolic N-dealkylation reaction rates. Drug Metab Dispos 2004;32:1111-20
  • Sheridan RP, Korzekwa KR, Torres RA, et al. Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. J Med Chem 2007;50:3173-84
  • Hansch C. Quantitative relationships between lipophilic character and drug metabolism. Drug Metab Rev 1972;1:1-13
  • Fox T, Kriegl JM. Linear quantitative structure-activity relationships for the interaction of small molecules with human cytochrome P450 isoenzymes. Ann Rev Comp Chem 2007;3:63-81
  • Lewis DF, Dickins M. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism. Drug Metab Rev 2003;35:1-18
  • Riley RJ, Parker AJ, Trigg S, et al. Development of a generalized, quantitative physicochemical model of CYP3A4 inhibition for use in early drug discovery. Pharm Res 2001;18:652-5
  • Crivori P, Poggesi I. Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem 2006;41:795-808
  • Kontijevskis A, Komorowski J, Wikberg JE. Generalized proteochemometric model of multiple cytochrome P450 enzymes and their inhibitors. J Chem Inf Model 2008;48:1840-50
  • Ekins S, Bravi G, Binkley S, et al. Three and four dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. Pharmacogenet 1999;9:477-89
  • Ekins S, Bravi G, Binkley S, et al. Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmacol Exp Ther 1999;290:429-38
  • Ekins S, Bravi G, Wikel JH, et al. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 1999;291:424-33
  • Strobl GR, Von Kruedener S, Stockigt J, et al. Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. J Med Chem 1993;36:1136-45
  • Ekins S, Stresser DM, Williams JA. In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci 2003;24:161-6
  • Schuster D, Laggner C, Steindl TM, et al. Development and validation of an in silico P450 profiler based on pharmacophore models. Curr Drug Discov Technol 2006;3:1-48
  • Li H, Sun J, Fan X, et al. Considerations and recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction. J Comput Aided Mol Des 2008;22:843-55
  • Yap CW, Xue Y, Li ZR, et al. Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors. Curr Top Med Chem 2006;6:1593-607
  • Eitrich T, Kless A, Druska C, et al. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 2007;47:92-103
  • Gleeson MP, Davis AM, Chohan KK, et al. Generation of in silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models. J Comput Aided Mol Des 2007;21:559-73
  • Jensen BF, Vind C, Padkjaer SB, et al. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50:501-11
  • Byvatov E, Baringhaus KH, Schneider G, et al. A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors. QSAR Comb Sci 2007;26:618-28
  • Kriegl JM, Arnhold T, Beck B, et al. Prediction of human cytochrome P450 inhibition using support vector machines. QSAR Comb Sci 2005;24:491-502
  • Demel MA, Janecek AGK, Thai KM, et al. Predictive QSAR models for polyspecific drug targets: The importance of feature selection. Curr Comput Aided Drug Des 2008;4:91-110
  • Sheridan RP, Feuston BP, Maiorov VN, et al. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 2004;44:1912-28
  • Xu YJ, Gao H. Dimension related distance and its application in QSAR/QSPR model error estimation. QSAR Comb Sci 2003;22:422-9
  • O'Brien SE, De Groot MJ. Greater than the sum of its parts: combining models for useful ADMET prediction. J Med Chem 2005;48:1287-91
  • Merkwirth C, Mauser H, Schulz-Gasch T, et al. Ensemble methods for classification in cheminformatics. J Chem Inf Comput Sci 2004;44:1971-8
  • Hudelson MG, Ketkar NS, Holder LB, et al. High confidence predictions of drug-drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods. J Med Chem 2008;51:648-54
  • Terfloth L, Bienfait B, Gasteiger J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 2007;47:1688-701
  • De Graaf C, Vermeulen NP, Feenstra, KA. Cytochrome p450 in silico: an integrative modeling approach. J Med Chem 2005;48:2725-55
  • De Graaf C, Oostenbrink C, Keizers PH, et al. Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. J Med Chem 2006;49:2417-30
  • Bazeley PS, Prithivi S, Struble CA, et al. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling. J Chem Inf Model 2006;46:2698-708
  • GOLD, Cambridge Crystallographic Data Centre, Cambrigde, UK
  • Sorich MJ, Smith PA, Miners JO, et al. Recent advances in the in silico modelling of UDP glucuronosyltransferase substrates. Curr Drug Metab 2008;9:60-9
  • Dajani R, Cleasby A, Neu M, et al. X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem 1999;274:37862-8
  • Sipila J, Hood AM, Coughtrie MW, et al. CoMFA modeling of enzyme kinetics: K(m) values for sulfation of diverse phenolic substrates by human catecholamine sulfotransferase SULT1A3. J Chem Inf Comput Sci 2003;43:1563-9
  • Bertilsson G, Heidrich J, Svensson K, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 1998;95:12208-13
  • Yasuda K, Ranade A, Venkataramanan R, et al. A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos 2008;36:1689-97
  • Khandelwal A, Krasowski MD, Reschly EJ, et al. Machine learning methods and docking for predicting human pregnane X receptor activation. Chem Res Toxicol 2008;21:1457-67
  • Ekins S. Systems-ADME/Tox: resources and network approaches. J Pharmacol Toxicol Methods 2006;53:38-66
  • Bugrim A, Nikolskaya T, Nikolsky Y. Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 2004;9:127-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.