1,677
Views
98
CrossRef citations to date
0
Altmetric
Reviews

Introduction to computational oral absorption simulation

Pages 259-293 | Published online: 16 Apr 2009

Bibliography

  • Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003;2:192-204
  • Kuentz M, Nick S, Parrott N, Roethlisberger D. A strategy for preclinical formulation development using GastroPlus (TM) as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur J Pharm Sci 2006;27:91-9
  • Dokoumetzidis A, Kalantzi L, Fotaki N. Predictive models for oral drug absorption: from in silico methods to integrated dynamical models. Expert Opin Drug Metab Toxicol 2007;3:491-505
  • Dokoumetzidis A, Valsami G, Macheras P. Modelling and simulation in drug absorption processes. Xenobiotica 2007;37:1052-65
  • Johansson F, Paterson R. Physiologically based in silico models for the prediction of oral drug absorption. Biotechnol Pharm Aspects 2008;7:486-509
  • Sugano K, Okazaki A, Sugimoto S, et al. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet 2007;22:225-54
  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235-49
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007;6:881-90
  • Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413-20
  • Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 2007;59:546-67
  • Avdeef A, Voloboy D, Foreman A. Dissolution and solubility. In: Testa B, van de Waterbeemd H, editors, Comprehensive medicinal chemistry II Volume 5 ADME-Tox approach, Elsevier: Oxford, 2007. p. 399-423
  • Avdeef A. Solubility of sparingly-soluble ionizable drugs. Adv Drug Deliv Rev 2007;59:568-90
  • Avdeef A. Absorption and drug development. Wiley-Interscience: 2003
  • Sugano K. Artificial membrane technologies to assess transfer and permeation of drugs in drug discovery. In: Testa B, van de Waterbeemd H, editors, Comprehensive medicinal chemistry II Volume 5 ADME-Tox approach, Elsevier: Oxford, 2007. p. 453-87
  • Hidalgo IJ. Assessing the absorption of new pharmaceuticals. Curr Top Med Chem 2001;1:385-401
  • Artursson P, Neuhoff S, Matsson P, Tavelin S. Passive permeability and active transport models for the prediction of oral absorption. In: Testa B, van de Waterbeemd H, editors, Comprehensive medicinal chemistry II Volume 5 ADME-Tox approach, Elsevier: Oxford, 2006. p. 259-78
  • Desesso JM, Jacobson CF. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 2001;39:209-28
  • Desesso JM, Williams AL. Contrasting the gastrointestinal tracts of mammals: factors that influence absorption. Annual Rep Med Chem 2008;43:353-71
  • McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 2008;364:213-26
  • Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993;10:1093-5
  • Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 1997;25:3-14
  • Sutton SC. Companion animal physiology and dosage form performance. Adv Drug Deliv Rev 2004;56:1383-98
  • Martinez M, Amidon G, Clarke L, et al. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. Part II. Physiological considerations. Adv Drug Deliv Rev 2002;54:825-50
  • Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995;16:351-80
  • Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res 1999;16:1883-7
  • Atkins P. Galileo's Finger: the ten great ideas of science. 2003. p. 392
  • Sugano K, Obata K, Saitoh R, et al. Processing of Biopharmaceutical Profiling Data in Drug Discovery. In: Testa B, Krämer S, Wunderli-Allenspach H, Folkers G, editors, Pharmacokinetic profiling in drug research, Wiley-VCH: Zurich, 2006. p. 441-58
  • Galia E, Nicolaides E, Horter D, et al. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 1998;15:698-705
  • Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 2008;25:1663-76
  • Takano R, Furumoto K, Shiraki K, et al. Rate-limiting steps of oral absorption for poorly water-soluble drugs in dogs; prediction from a miniscale dissolution test and a physiologically-based computer simulation. Pharm Res 2008;25:2334-44
  • Takano R, Sugano K, Higashida A, et al. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res 2006;23:1144-56
  • Rippie EG, Lamb DJ, Romig PW. Solubilization of weakly acidic and basic drugs by aqueous solutions of polysorbate 80. J Pharm Sci 1964;53:1346-8
  • Dressman J, PhysChem forum 4, Brussels, Belgium, 30 November 2007. Available from: http://www.physchem.org.uk/symp04/symp04.htm
  • Jinno J, Oh DM, Crison JR, Amidon GL. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J Pharm Sci 2000;89:268-74
  • Glomme A, März J, Dressman J. Predicting the intestinal solubility of poorly soluble drugs. In: Testa B, Krämer S, Wunderli-Allenspach H, Folkers G, editors, Pharmacokinetic profiling in drug research, Wiley-VCH: Zurich, 2006. p. 259-80
  • Avdeef A, Box KJ, Comer JE, et al. pH-metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm Res 1998;15:209-15
  • Kalantzi L, Goumas K, Kalioras V, et al. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 2006;23:165-76
  • Dietschy JM. Mechanisms for the intestinal absorption of bile acids. J Lipid Res 1968;9:297-309
  • Kalantzi L, Persson E, Polentarutti B, et al. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm Res 2006;23:1373-81
  • Scholz A, Kostewicz E, Abrahamsson B, et al. Can the USP paddle method be used to represent in-vivo hydrodynamics? J Pharm Pharmacol 2003;55:443-51
  • Akimoto M, Nagahata N, Furuya A, et al. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm 2000;49:99-102
  • Yamada I, Goda T, Kawata M, Ogawa K. Use of gastric acidity-controlled beagle dogs in bioavailability studies of cinnarizine. Yakugaku Zasshi 1990;110:280-5
  • Llinas A, Glen RC, Goodman JM. Solubility challenge: can you predict solubilities of 32 molecules using a database of 100 reliable measurements? J Chem Inf Model 2008;48:1289-303
  • Yalkowsky SH. Solubility and solubilization in aquenous media. Oxford university press: New York, 1999
  • Yalkowsky SH, Valvani SC. Solubility and partitioning. I: solubility of nonelectrolytes in water. J Pharm Sci 1980;69:912-22
  • Yang G, Ran Y, Yalkowsky SH. Prediction of the aqueous solubility: comparison of the general solubility equation and the method using an amended solvation energy relationship. J Pharm Sci 2002;91:517-33
  • Jain A, Yang G, Yalkowsky SH. Estimation of melting points of organic compounds. Ind Eng Chem Res 2004;43:7618-21
  • Jain A, Yalkowsky SH. Estimation of melting points of organic compounds-II. J Pharm Sci 2006;95:2562-618
  • Jain A, Yalkowsky SH. Comparison of two methods for estimation of melting points of organic compounds. Ind Eng Chem Res 2007;46:2589-92
  • Wassvik CM, Holmen AG, Bergstroem CAS, et al. Contribution of solid-state properties to the aqueous solubility of drugs. Eur J Pharm Sci 2006;29:294-305
  • Wassvik CM, Holmen AG, Draheim R, et al. Molecular characteristics for solid-state limited solubility. J Med Chem 2008;51:3035-9
  • Miyazaki J, Hideg K, Marsh D. Interfacial ionization and partitioning of membrane-bound local anesthetics. Biochim Biophys Acta Biomembr 1992;1103:62-8
  • Naylor LJ, Bakatselou V, Dressman JB. Comparison of the mechanism of dissolution of hydrocortisone in simple and mixed micelle systems. Pharm Res 1993;10:865-70
  • Balakrishnan A, Rege BD, Amidon GL, Polli JE. Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J Pharm Sci 2004;93:2064-75
  • Rao VM, Lin M, Larive CK, Southard MZ. A mechanistic study of griseofulvin dissolution into surfactant solutions under laminar flow conditions. J Pharm Sci 1997;86:1132-7
  • Granero GE, Ramachandran C, Amidon GL. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions. Drug Dev Ind Pharm 2005;31:917-22
  • Sun W, Larive CK, Southard MZ. A mechanistic study of danazol dissolution in ionic surfactant solutions. J Pharm Sci 2003;92:424-35
  • Okazaki A, Mano T, Sugano K. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. J Pharm Sci 2008;97:1843-52
  • Avdeef A, Nielsen PE, Tsinman O. PAMPA–a drug absorption in vitro model: 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci 2004;22:365-74
  • Egelhaaf SU, Schurtenberger P. Shape transformations in the lecithin-bile salt system: from cylinders to vesicles. J Phys Chem 1994;98:8560-73
  • Leng J, Egelhaaf SU, Cates ME. Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys J 2003;85:1624-46
  • Okazaki A, Mano T, Sugano K. Theoretical dissolution model of poly–disperse drug particles in biorelevant media [meeting abstract and poster]. J Pharm Sci Technol Japan 2007;67
  • Brunner E. Velocity of reaction in non-homogeneous systems. Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre 1904;47:56-102
  • Nernst W. Theory of reaction velocity in heterogenous systems. Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre 1904;47:52-5
  • Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897;19:930-4
  • Dokoumetzidis A, Macheras P. A century of dissolution research: from noyes and whitney to the biopharmaceutics classification system. Int J Pharm 2006;321:1-11
  • Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids. I: effect of pH under unbuffered conditions. J Pharm Sci 1981;70:13-22
  • Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids. II: Effects of buffers. J Pharm Sci 1981;70:22-32
  • Aunins JG, Southard MZ, Myers RA, et al. Dissolution of carboxylic acids. III. The effect of polyionizable buffers. J Pharm Sci 1985;74:1305-16
  • Southard MZ, Green DW, Stella VJ, Himmelstein KJ. Dissolution of ionizable drugs into unbuffered solution: a comprehensive model for mass transport and reaction in the rotating disk geometry. Pharm Res 1992;9:58-69
  • McNamara DP, Amidon GL. Reaction plane approach for estimating the effects of buffers on the dissolution rate of acidic drugs. J Pharm Sci 1988;77:511-17
  • Ozturk SS, Palsson BO, Dressman JB. Dissolution of ionizable drugs in buffered and unbuffered solutions. Pharm Res 1988;5:272-82
  • Avdeef A, Tsinman O. Miniaturized rotating disk intrinsic dissolution rate measurement: effects of buffer capacity in comparisons to traditional wood's apparatus. Pharm Res 2008;25:2613-27
  • Li S, Doyle P, Metz S, et al. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J Pharm Sci 2005;94:2224-31
  • Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts. II: salicylic acid, theophylline, and benzoic acid. J Pharm Sci 1985;74:148-54
  • Serajuddin ATM, Mufson D. pH-solubility profiles of organic bases and their hydrochloride salts. Pharm Res 1985:65-8
  • Pudipeddi M, Zannou EA, Vasanthavada M, et al. Measurement of surface pH of pharmaceutical solids: a critical evaluation of indicator dye-sorption method and its comparison with slurry pH method. J Pharm Sci 2008;97:1831-42
  • Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007;59:603-16
  • Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci 2006;95:499-516
  • Shiraki K, Takata N, Takano R, et al. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res 2008;25:2581-92
  • Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm 1989;51:9-17
  • Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci 1999;88:731-8
  • Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data. J Pharm Sci 2002;91:534-42
  • Harriott P. Mass transfer to particles: Part 1. Suspended inagitated tanks. AICHE J 1962;8:93-102
  • Armenante PM, Kirwan DJ. Mass transfer to microparticles in agitated systems. Chem Eng Sci 1989;44:2781-96
  • Levins DM, Glastonbury JF. Particle-liquid hydrodynamics and mass transfer in a stirred vessel. I. Particle-liquid motion. Trans Inst Chem Eng 1972;50:32-41
  • Levins DM, Glastonbury JR. Particle-liquid hydrodynamics and mass transfer in a stirred vessel. 2. Mass transfer. Trans Inst Chem Eng 1972;50:132-46
  • Sugano K. Theoretical comparison of hydrodynamic diffusion layer models used for dissolution simulation in drug discovery and development. Int J Pharm 2008;363:73-7
  • Ghionzoli A, Bujalski W, Grenville RK, et al. The effect of bottom roughness on the minimum agitator speed required to just fully suspend particles in a stirred vessel. Chem Eng Res Des 2007;85:685-90
  • Bai G, Armenante PM, Plank RV. Experimental and computational determination of blend time in USP dissolution testing apparatus II. J Pharm Sci 2007;96:3072-86
  • Bai G, Armenante PM, Plank RV, et al. Hydrodynamic investigation of USP dissolution test apparatus II. J Pharm Sci 2007;96:2327-49
  • McCarthy Leonard G, Bradley G, Sexton James C, et al. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities. AAPS PharmSciTech 2004;5:e31
  • Kukura J, Arratia PE, Szalai ES, Muzzio FJ. Engineering tools for understanding the hydrodynamics of dissolution tests. Drug Dev Ind Pharm 2003;29:231-9
  • Johnson KC. Dissolution and absorption modeling: model expansion to simulate the effects of precipitation, water absorption, longitudinally changing intestinal permeability, and controlled release on drug absorption. Drug Dev Ind Pharm 2003;29:833-42
  • Fukunaka T, Yaegashi Y, Nunoko T, et al. Dissolution characteristics of cylindrical particles and tablets. Int J Pharm 2006;310:146-53
  • Mosharraf M, Nystroem C. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 1995;122:35-47
  • Jia X, Williams RA. A hybrid mesoscale modelling approach to dissolution of granules and tablets. Chem Eng Res Des 2007;85:1027-38
  • Cao X, Leyva N, Anderson SR, Hancock BC. Use of prediction methods to estimate true density of active pharmaceutical ingredients. Int J Pharm 2008;355:231-7
  • Girolami GS. A simple “back of the envelope” method for estimating the densities and molecular volumes of liquids and solids. J Chem Educ 1994;71:962-4
  • Katori N, Aoyagi N, Terao T. Estimation of agitation intensity in the GI tract in humans and dogs based on in vitro/in vivo correlation. Pharm Res 1995;12:237-43
  • Kamba M, Seta Y, Kusai A, Nishimura K. Comparison of the mechanical destructive force in the small intestine of dog and human. Int J Pharm 2002;237:139-49
  • Crail DJ, Tunis A, Dansereau R. Is the use of a 200 ml vessel suitable for dissolution of low dose drug products? Int J Pharm 2004;269:203-9
  • McNamara DP, Whitney KM, Goss SL. Use of a physiologic bicarbonate buffer system for dissolution characterization of ionizable drugs. Pharm Res 2003;20:1641-6
  • Serajuddin ATM, Rosoff M. pH-solubility profile of papaverine hydrochloride and its relationship to the dissolution rate of sustained-release pellets. J Pharm Sci 1984;73:1203-8
  • Kashchiev D. Nucleation. Butterworth Heinemann: 2000
  • Lindfors L, Forssen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci 2008;325:404-13
  • Liu XY. A new kinetic model for three-dimensional heterogeneous nucleation. J Chem Phys 1999;111:1628-35
  • Box KJ, Volgyi G, Baka E, et al. Equilibrium versus kinetic measurements of aqueous solubility, and the ability of compounds to supersaturate in solution–a validation study. J Pharm Sci 2006;95:1298-307
  • He G, Bhamidi V, Tan RBH, et al. Determination of critical supersaturation from microdroplet evaporation experiments. Cryst Growth Des 2006;6:1175-80
  • Kostewicz ES, Wunderlich M, Brauns U, et al. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol 2004;56:43-51
  • Carino SR, Sperry DC, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. J Pharm Sci 2005;95:116-25
  • Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 1997;63:1481-92
  • Szentkuti L. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J Control Release 1997;46:233-42
  • Lai SK, O'hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 2007;104:1482-7, S1482/1-S1482/5
  • Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci 1982;71:77-84
  • Ingels F, Beck B, Oth M, Augustijns P. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int J Pharm 2004;274:221-32
  • Katneni K, Charman SA, Porter CJH. Permeability assessment of poorly water-soluble compounds under solubilizing conditions: the reciprocal permeability approach. J Pharm Sci 2006;95:2170-85
  • Lennernaes H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 2007;37:1015-51
  • Lennernas H. Human intestinal permeability. J Pharm Sci 1998;87:403-10
  • Chiou WL. Determination of drug permeability in a flat or distended stirred intestine. Prediction of fraction dose absorbed in humans after oral administration. Int J Clin Pharmacol Ther 1994;32:474-82
  • Sugano K. Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. Int J Pharm 2009 doi:10.1016/j.ijpharm.2008.10.001: 116-22
  • Winne D. The permeability coefficient of the wall of a villous membrane. J Math Biol 1978;6:95-108
  • Oliver RE, Jones AF, Rowland M. What surface of the intestinal epithelium is effectively available to permeating drugs? J Pharm Sci 1998;87:634-9
  • Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol 2001;280:G922-9
  • Li CY, Zimmerman CL, Wiedmann TS. Diffusivity of bile salt/phospholipid aggregates in mucin. Pharm Res 1996;13:535-41
  • Lafitte G, Thuresson K, Soederman O. Diffusion of nutrients molecules and model drug carriers through mucin layer investigated by magnetic resonance imaging with chemical shift resolution. J Pharm Sci 2006;96:258-63
  • Nilsson D, Fagerholm U, Lennernas H. The influence of net water absorption on the permeability of antipyrine and levodopa in the human jejunum. Pharm Res 1994;11:1540-4
  • Pappenheimer JR. Role of pre-epithelial “unstirred” layers in absorption of nutrients from the human jejunum. J Membr Biol 2001;179:185-204
  • Sanders NN, De Smedt SC, DeMeester J. The physical properties of biogels and their permeability for macromolecular drugs and colloidal drug carriers. J Pharm Sci 2000;89:835-49
  • Khanvilkar K, Donovan MD, Flanagan DR, et al. Drug transfer through mucus. Adv. Drug Delivery Rev 2001;48:173-93
  • Peppas NA, Hansen PJ, Buri PA. A theory of molecular diffusion in the intestinal mucus. Int J Pharm 1984;20:107-18
  • Said HM, Blair JA, Lucas ML, Hilburn ME. Intestinal surface acid microclimate in vitro and in vivo in the rat. J Lab Clin Med 1986;107:420-4
  • Sugano K, Nabuchi Y, Machida M, Asoh Y. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane. Int J Pharm 2004;275:271-8
  • Seo PR, Teksin ZS, Kao JPY, Polli JE. Lipid composition effect on permeability across PAMPA. Eur J Pharm Sci 2006;29:259-68
  • Teksin ZS, Hom K, Balakrishnan A, Polli JE. Ion pair-mediated transport of metoprolol across a three lipid-component PAMPA system. J Control Release 2006;116:50-7
  • Anderson JM. Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 2001;16:126-30
  • Adson A, Burton PS, Ruab TJ, et al. Passive diffusion of weak organic electolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular and paracellular barriers. Pharm Res 1995;84:1197-203
  • Adson A, Ruab TJ, Burton PS, et al. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 1994;83:1529-30
  • Sugano K, Takata N, Machida M, et al. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int J Pharm 2002;241:241-51
  • Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm 2003;257:245-51
  • Obata K, Sugano K, Saitoh R, et al. Prediction of oral drug absorption in humans by theoretical passive absorption model. Int J Pharm 2005;293:183-92
  • Liu Y, Hunt CA. Studies of intestinal drug transport using an in silico epithelio-mimetic device. BioSystems 2005;82:154-67
  • Knipp TG, Ho NFH, Barsuhn CL, Borchardt RT. Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in size and charge. J Pharm Sci 1997;86:1105-10
  • Matsson P, Bergstroem CAS, Nagahara N, et al. Exploring the role of different drug transport routes in permeability screening. J Med Chem 2005;48:604-13
  • Sugano K, Yoshida S, Takaku M, et al. Quantitative structure-intestinal permeability relationship of benzamidine analogue thrombin inhibitor. Bioorg Med Chem Lett 2000;10:1939-42
  • Kristl A, Tukker JJ. Negative correlation of n-octanol/water partition coefficient and transport of some guanine derivatives through rat jejunum in vitro. Pharm Res 1998;15:499-501
  • Madan J, Chawla G, Arora V, et al. Unbiased membrane permeability parameters for gabapentin using boundary layer approach. AAPS J 2005;7:E224-30
  • Shirasaka Y, Masaoka Y, Kataoka M, et al. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo. Drug Metab Dispos 2008;36:916-22
  • Masaoka Y, Tanaka Y, Kataoka M, et al. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci 2006;29:240-50
  • Fagerholm U, Nilsson D, Knutson L, Lennernas H. Jejunal permeability in humans in vivo and rats in situ: investigation of molecular size selectivity and solvent drag. Acta Physiologica Scandinavica 1999;165:315-24
  • Lennernaes H, Ahrenstedt O, Ungell AL. Intestinal drug absorption during induced net water absorption in man: a mechanistic study using antipyrine, atenolol and enalaprilat. Br J Clin Pharmacol 1994;37:589-96
  • Lambert GP, Chang RT, Xia T, et al. Absorption from different intestinal segments during exercise. J Appl Physiol 1997;83:204-12
  • Pappenheimer JR. Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms. Comp Biochem Physiol A Mol Integr Physiol 1998;121:45-58
  • Fagerholm U, Lennernaes H. Experimental estimation of the effective unstirred water layer thickness in the human jejunum, and its importance in oral drug absorption. Eur J Pharm Sci 1995;3:247-53
  • Chiou WL. Effect of ‘unstirred’ water layer in the intestine on the rate and extent of absorption after oral administration. Biopharm Drug Dispos 1994;15:709-17
  • Schiller C, Frohlich CP, Giessmann T, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment pharmacol Ther 2005;22:971-9
  • Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab 2007;8:645-57
  • Yu LX, Amidon GL, Polli JE, et al. biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 2002;19:921-5
  • Chiou WL, Barve A. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm Res 1998;15:1792-5
  • Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res 2000;17:135-40
  • He Y, Murby S, Warhurst G, et al. Species differences in size discrimination in the paracellular pathway refrected by oral bioavailability of poly(ethylene glycol) and D-peptides. J Pharm Sci 1998;87:626-33
  • Artursson P, Ungell AL, Loefroth JE. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res 1993;10:1123-9
  • Karlsson J, Ungell AL, Grasjo J, Artursson P. Paracellular drug transport across intestinal epithelia: influence of charge and induced water flux. Eur J Pharm Sci 1999;9:47-56
  • Fagerholm U, Johansson M, Lennernaes H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res 1996;13:1336-42
  • Zakeri-Milani P, Valizadeh H, Tajerzadeh H, et al. Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci 2007;10:368-79
  • Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharmaceutics 2008;5:760-75
  • Avdeef A, Bendels S, Di L, et al. Parallel artificial membrane permeability assay (PAMPA)-critical factors for better predictions of absorption. J Pharm Sci 2007;96:2893-909
  • Sugano K. Theoretical investigation of passive intestinal membrane permeability using Monte Carlo method to generate drug like molecule population. Int J Pharm 2009 In press
  • Martin YC. A practitioner's perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J Med Chem 1981;24:229-37
  • Youdim KA, Avdeef A, Abbott NJ. In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today 2003;8:997-1003
  • Yamashita S, Tanaka Y, Endoh Y, et al. Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm Res 1997;14:486-91
  • Krishna G, Chen KJ, Lin CC, Nomeir AA. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int J Pharm 2001;222:77-89
  • Kansy M, Fischer H, Kratzat K, et al. High-throughput artifical membrane permeability studies in early lead discovery and development. 3-906390-22-5 edition. In: Testa B, Van de Waterbeemd H, Folkers G, Guy R, editors, Pharmacokinetic optimization in drug research, WILEY-VCH: Zürich, 2001. p. 447-64
  • Avdeef A, Nielsen PE, Tsinman O. PAMPA–a drug absorption in vitro model*1: 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci 2004;22:365
  • Avdeef A, Artursson P, Neuhoff S, et al. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA method. Eur J Pharm Sci 2005;24:333-49
  • Neuhoff S, Ungell AL, Zamora I, Artursson P. pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur J Pharm Sci 2005;25:211-20
  • Neuhoff S, Artursson P, Ungell AL. Advantages and disadvantages of using bovine serum albumin and/or Cremophor EL as extracellular additives during transport studies of lipophilic compounds across Caco-2 monolayers. J Drug Deliv Sci Technol 2007;17:259-66
  • Sawada GA, Ho NF, Williams LR, et al. Transcellular permeability of chlorpromazine demonstrating the roles of protein binding and membrane partitioning. Pharm Res 1994;11:665-73
  • Yamashita S, Furubayashi T, Kataoka M, et al. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 2000;10:195-204
  • Di L, Kerns EH. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov Today 2006;11:446-51
  • DeWitte RS. Avoiding physicochemical artefacts in early ADME-Tox experiments. Drug Discov Today 2006;11:855-9
  • Huque FT, Box K, Platts JA, Comer J. Permeability through DOPC/dodecane membranes: measurement and LFER modelling. Eur J Pharm Sci 2004;23:223-32
  • Ruell JA, Tsinman KL, Avdeef A. PAMPA–a drug absorption in vitro model*1: 5. Unstirred water layer in iso-pH mapping assays and pKaflux–optimized design (pOD-PAMPA). Eur J Pharm Sci 2003;20:393
  • Dressman JB, Fleisher D. Mixing-tank model for predicting dissolution rate control or oral absorption. J Pharm Sci 1986;75:109-16
  • Nicolaides E, Symillides M, Dressman JB, Reppas C. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm Res 2001;18:380-8
  • Yu LX, Amidon GL. Characterization of small intestinal transit time distribution in humans. Int J Pharm 1998;171:157-63
  • Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev 1996;19:359-76
  • Fujioka Y, Metsugi Y, Ogawara KI, et al. Evaluation of in vivo dissolution behavior and GI transit of griseofulvin, a BCS class II drug. Int J Pharm 2008;352:36-43
  • Haruta S, Iwasaki N, Ogawara KI, et al. Absorption behavior of orally administered drugs in rats treated with Propantheline. J Pharm Sci 1998;87:1081-5
  • Sawamoto T, Haruta S, Kurosaki Y, et al. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J Pharm Pharmacol 1997;49:450-7
  • Available from: http://www.simcyp.com/
  • Ni PF, Ho NFH, Fox JL, et al. Theoretical model studies of intestinal drug absorption. V. Non-steady-state fluid flow and absorption. Int J Pharm 1980;5:33-47
  • Willmann S, Schmitt W, Keldenich J, Dressman JB. A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm Res 2003;20:1766-71
  • Willmann S, Schmitt W, Keldenich J, et al. A physiological model for the estimation of the fraction dose absorbed in humans. J Med Chem 2004;47:4022-31
  • Sugito K, Ogata H, Goto H, et al. Gastrointestinal transit of non-disintegrating solid formulations in humans. Int J Pharm 1990;60:89-97
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995;125:91-7
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18:113-20
  • Galli C. Experimental determination of the diffusion boundary layer width of micron and submicron particles. Int J Pharm 2006;313:114-22
  • Jinno JI, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 2006;111:56-64
  • Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007;6:231-48
  • Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 2006;29:278-87
  • Perlman ME, Murdande SB, Gumkowski MJ, et al. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int J Pharm 2008;351:15-22
  • De Smidt PC, Campanero MA, Troconiz IF. Intestinal absorption of penclomedine from lipid vehicles in the conscious rat: contribution of emulsification versus digestibility. Int J Pharm 2004;270:109-18
  • MacGregor KJ, Embleton JK, Lacy JE, et al. Influence of lipolysis on drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 1997;25:33-46
  • Araya H, Tomita M, Hayashi M. The novel formulation design of self-emulsifying drug delivery systems (SEDDS) type O/W microemulsion III: the permeation mechanism of a poorly water soluble drug entrapped O/W microemulsion in rat isolated intestinal membrane by the ussing chamber method. Drug Metab Pharmacokinet 2006;21:45-53
  • Thombre AG. Assessment of the feasibility of oral controlled release in an exploratory development setting. Drug Discov Today 2005;10:1159-66
  • Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm 2008;364:328-43
  • Tannergren C, Bergendal A, Lennernas H, Abrahamsson B. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol Pharm 2008;6:60-73
  • Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999;37:213-55
  • Singh BN. A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulations. Drug Dev Res 2005;65:55-75
  • Gu CH, Li H, Levons J, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res 2007;24:1118-30
  • Jones HM, Parrott N, Ohlenbusch G, Lave T. Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin Pharmacokinet 2006;45:1213-26
  • Gu CH, Li H, Levons J, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res 2008;25:979. Erratum to document cited in CA147:000758.
  • Mizuma T. Kinetic impact of presystemic intestinal metabolism on drug absorption: experiment and data analysis for the prediction of in vivo absorption from in vitro data. Drug Metab Pharmacokinet 2002;17:496-506
  • Fagerholm U. Prediction of human pharmacokinetics-gut-wall metabolism. J Pharm Pharmacol 2008;59:1335-43
  • Yang J, Jamei M, Yeo KR, et al. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab 2007;8:676-84
  • Englund G, Rorsman F, Roennblom A, et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharm Sci 2006;29:269-77
  • Kwon H, Lionberger RA, Yu LX. Impact of P-glycoprotein-mediated intestinal efflux kinetics on oral bioavailability of P-glycoprotein substrates. Mol Pharm 2004;1:455-65
  • Chiou WL, Chung SM, Wu TC, Ma C. A comprehensive account on the role of efflux transporters in the gastrointestinal absorption of 13 commonly used substrate drugs in humans. Int J Clin Pharmacol Ther 2001;39:93-101
  • Cao X, Yu LX, Barbaciru C, et al. Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol Pharm 2005;2:329-40
  • Garmire LX, Hunt CA. In silico methods for unraveling the mechanistic complexities of intestinal absorption: metabolism-efflux transport interactions. Drug Metab Dispos 2008
  • Liu Y, Hunt CA. Mechanistic study of the cellular interplay of transport and metabolism using the synthetic modeling. Method Pharm Res 2006;23:493-505
  • Mizuma T. Pharmacokinetic strategy for designing orally effective prodrugs overcoming biological membrane barriers: proposal of kinetic classification and criteria for membrane-permeable prodrug-likeness. Chem Bio Inf J 2008;8:25-32
  • Ungell AL, Nylander S, Bergstrand S, et al. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci 1998;87:360-6
  • Johnson KC, Swindell AC. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm Res 1996;13:1795-8
  • Avdeef A. High-throughput solubility, permeability, and the MAD PAMPA model. In: Testa B, Krämer S, Wunderli-Allenspach H, Folkers G, editors, Pharmacokinetic profiling in drug research, Wiley-VCH: Zurich, 2006
  • Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res 1993;10:264-70
  • Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 2006;45:511-42
  • Persson EM, Nordgren A, Forsell P, et al. Improved understanding of the effect of food on drug absorption and bioavailability for lipophilic compounds using an intestinal pig perfusion model. Eur J Pharm Sci 2008;34:22-9
  • Van De Waterbeemd H. In silico models to predict oral absorption. Compr Med Chem II 2006;5:669-97
  • Artursson P, Karlsson J. Correlation between oral absorption in humans and apparent drug permeability coefficients in human intestinal epithelial Caco2 cells. Biochem Biophys Res Commun 1991;175:880-5
  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 1998;41:1007-10
  • Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem 2001;44:923-30
  • Sugano K, Hamada H, Machida M, Ushio H. High throuput prediction of oral absorption: improvement of the composition of the lipid solution used in parallel artificial membrane permeation assay. J Biomol Screen 2001;6:189-96
  • Saitoh R, Sugano K, Takata N, et al. Correction of permeability with pore radius of tight junctions in Caco-2 monolayers improves the prediction of the dose fraction of hydrophilic drugs absorbed by humans. Pharm Res 2004;21:749
  • Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 2007;6:140-8
  • Kataoka M, Masaoka Y, Sakuma S, Yamashita S. Effect of food intake on the oral absorption of poorly water-soluble drugs: in vitro assessment of drug dissolution and permeation assay system. J Pharm Sci 2006;95:2051-61
  • Kataoka M, Masaoka Y, Yamazaki Y, et al. In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs. Pharm Res 2003;20:1674-80
  • Lipka E, Spahn-Langguth H, Mutschler E, Amidon GL. In vivo non-linear intestinal permeability of celiprolol and propranolol in conscious dogs: evidence for intestinal secretion. Eur J Pharm Sci 1998;6:75-81
  • Mannhold R, Poda GIP, Ostermann C, Tetko IVT. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 2008, Early view

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.