138
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Role of glycogen synthase kinase-3 in l-DOPA-induced neurotoxicity

, & , MD PhD
Pages 1359-1368 | Published online: 10 Aug 2009

Bibliography

  • Marsden CD. Parkinson's disease. J Neurol Neurosurg Psychiatry 1994;57:672-81
  • Cotzias GC, Van Woert MH, Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276:374-9
  • Fehling C. Treatment of Parkinson's syndrome with L-dopa. A double blind study. Acta Neurol Scand 1966;42:367-72
  • Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 2001;16:448-58
  • Padovan-Neto FE, Echeverry MB, Tumas V, Del-Bel EA. Nitric oxide synthase inhibition attenuates L-DOPA-induced dyskinesias in a rodent model of Parkinson's disease. Neuroscience 2009;159:925-35
  • Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res 2003;5:165-76
  • Chen J, Wersinger C, Sidhu A. Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem 2003;278:28089-100
  • Soliman MK, Mazzio E, Soliman KF. LevoDOPA modulating effects of inducible nitric oxide synthase and reactive oxygen species in glioma cells. Life Sci 2002;72:185-98
  • Boje KM. Nitric oxide neurotoxicity in neurodegenerative diseases. Front Biosci 2004;9:763-76
  • Mena MA, Pardo B, Casarejos MJ, Neurotoxicity of levoDOPA on catecholamine-rich neurons. Mov Disord 1992;7:23-31
  • Mena MA, Pardo B, Paino CL, LevoDOPA toxicity in foetal rat midbrain neurones in culture: modulation by ascorbic acid. Neuroreport 1993;4:438-40
  • Steece-Collier K, Collier TJ, Sladek CD, Chronic levoDOPA impairs morphological development of grafted embryonic dopamine neurons. Exp Neurol 1990;110:201-8
  • Tanaka M, Sotomatsu A, Kanai H, DOPA and dopamine cause cultured neuronal death in the presence of iron. J Neurol Sci 1991;101:198-203
  • Walkinshaw G, Waters CM. Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson's disease. J Clin Invest 1995;95:2458-64
  • Maharaj H, Sukhdev Maharaj D, Scheepers M, l-DOPA administration enhances 6-hydroxydopamine generation. Brain Res 2005;1063:180-6
  • Muller T, Hefter H, Hueber R, Is levoDOPA toxic? J Neurol 2004;251(Suppl 6):44-6
  • Agil A, Duran R, Barrero F, Plasma lipid peroxidation in sporadic Parkinson's disease. Role of the L-dopa. J Neurol Sci 2006;240:31-6
  • Mytilineou C, Han SK, Cohen G. Toxic and protective effects of L-DOPA on mesencephalic cell cultures. J Neurochem 1993;61:1470-8
  • Kondo T. LevoDOPA therapy from the neuroprotection viewpoint. From a clinical outlook. J Neurol 2005;252:IV32-36
  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 1980;107:519-27
  • Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004;29:95-102
  • Bijur GN, Jope RS. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 2000;75:2401-8
  • Bijur GN, Jope RS. Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. J Biol Chem 2001;276:37436-42
  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001;65:391-426
  • Koh SH, Kim SH, Kwon H, Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res 2003;118:72-81
  • Koh SH, Kim SH, Kwon H, Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal-differentiated N18D3 cells. Neurotoxicology 2004;25:793-802
  • Takadera T, Ohyashiki T. Glycogen synthase kinase-3 inhibitors prevent caspase-dependent apoptosis induced by ethanol in cultured rat cortical neurons. Eur J Pharmacol 2004;499:239-45
  • Watcharasit P, Bijur GN, Song L, Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 2003;278:48872-9
  • Chen G, Bower KA, Ma C, Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 2004;18:1162-4
  • Koh SH, Song C, Noh MY, Inhibition of glycogen synthase kinase-3 reduces L-DOPA-induced neurotoxicity. Toxicology 2008;247:112-8
  • Caudle WM, Richardson JR, Wang MZ, Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 2007;27:8138-48
  • Chen L, Ding Y, Cagniard B, Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 2008;287:425-33
  • Zigmond RE, Schwarzschild MA, Rittenhouse AR. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu Rev Neurosci 1989;12:415-61
  • Kumer SC, Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 1996;67:443-62
  • Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004;56:331-49
  • Conway KA, Rochet JC, Bieganski RM, Lansbury PTJr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 2001;294:1346-9
  • Cooper AA, Gitler AD, Cashikar A, Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 2006;313:324-8
  • Chen L, Cagniard B, Mathews T, Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 2005;280:21418-26
  • Bonifati V, Rizzu P, van Baren MJ, Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256-9
  • Goldberg MS, Fleming SM, Palacino JJ, Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003;278:43628-35
  • LaVoie MJ, Ostaszewski BL, Weihofen A, Dopamine covalently modifies and functionally inactivates parkin. Nat Med 2005;11:1214-21
  • Norris EH, Giasson BI, Hodara R, Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 2005;280:21212-9
  • Mazzulli JR, Mishizen AJ, Giasson BI, Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 2006;26:10068-78
  • Duka T, Rusnak M, Drolet RE, Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism. FASEB J 2006;20:2302-12
  • Goers J, Manning-Bog AB, McCormack AL, Nuclear localization of alpha-synuclein and its interactionwith histones. Biochemistry 2003;42:8465-71
  • Duka T, Duka V, Joyce JN, Sidhu A. {alpha}-Synuclein contributes to GSK-3{beta}-catalyzed Tau phosphorylation in Parkinson's disease models. FASEB J 2009. In press
  • Mosharov EV, Larsen KE, Kanter E, Interplay between cytosolic dopamine, calcium, and a-synuclein causes selective death of substantia nigra neurons. Neuron 2009;62:218-29
  • Martinez-Vicente M, Talloczy Z, Kaushik S, Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008;118:777-88
  • Burke WJ, Kumar VB, Pandey N, Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 2008;115:193-203
  • Olanow CW, Gauger LL, Cedarbaum JM. Temporal relationships between plasma and cerebrospinal fluid pharmacokinetics of levodopa and clinical effect in Parkinson's disease. Ann Neurol 1991;29:556-9
  • Fahn S, and the Parkinson study group. Does levodopa slow or hasten the rate of progression of Parkinson's disease? J Neurol 2005;252(Suppl 4):IV37-42
  • Chan PL, Nutt JG, Holford NH. Levodopa slows progression of Parkinson's disease. External validation by clinical trial simulation. Pharm Res 2007;24:791-802
  • Kang UJ, Lee WY, Chang JW. Gene therapy for Parkinson's disease: determining the genes necessary for optimal dopamine replacement in rat models. Hum Cell 2001;14:39-48
  • Liste I, Navarro B, Johansen J, Low-level tyrosine hydroxylase (TH) expression allows for the generation of stable TH+ cell lines of human neural stem cells. Hum Gene Ther 2004;15:13-20
  • Chan CS, Guzman JN, Ilijic E, ‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease. Nature 2007;447:1081-6
  • Surmeier DJ. Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol 2007;6:933-8
  • Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson's disease: is there a causal link? Exp Neurol 2005;193:279-90
  • Grunblatt E, Mandel S, Youdim MB. Neuroprotective strategies in Parkinson's disease using the models of 6-hydroxydopamine and MPTP. Ann NY Acad Sci 2000;899:262-73
  • Spina MB, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 1989;86:1398-400
  • Ogawa N, Edamatsu R, Mizukawa K, Degeneration of dopaminergic neurons and free radicals. Possible participation of levodopa. Adv Neurol 1993;60:242-50
  • Miyazaki I, Asanuma M. Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med Okayama 2008;62:141-50
  • Hawley MD, Tatawawadi SV, Piekarski S, Electrochemical studies of the oxidation pathways of catecholamines. J Am Chem Soc 1967;89:447-50
  • Baez S, Linderson Y, Segura-Aguilar J. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem Mol Med 1995;54:12-8
  • Segura-Aguilar J, Metodiewa D, Welch CJ. Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta 1998;1381:1-6
  • Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007;59:125-50
  • Bialecka M, Drozdzik M, Klodowska-Duda G, The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levoDOPA therapy in patients with sporadic Parkinson's disease. Acta Neurol Scand 2004;110:260-6
  • Przedborski S, Jackson-Lewis V, Muthane U, Chronic levoDOPA administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol 1993;34:715-23
  • Spencer JP, Jenner A, Aruoma OI, Intense oxidative DNA damage promoted by L-DOPA and its metabolites. Implications for neurodegenerative disease. FEBS Lett 1994;353:246-50
  • Wick MM. Levodopa/dopamine analogs as inhibitors of DNA synthesis in human melanoma cells. J Invest Dermatol 1989;92:329S-31S
  • Nyholm D, Lennernas H, Gomes-Trolin C, LevoDOPA pharmacokinetics and motor performance during activities of daily living in patients with Parkinson's disease on individual drug combinations. Clin Neuropharmacol 2002;25:89-96
  • Woodgett JR. cDNA cloning and properties of glycogen synthase kinase-3. Methods Enzymol 1991;200:564-77
  • Koh SH, Lee YB, Kim KS, Role of GSK-3beta activity in motor neuronal cell death induced by G93A or A4V mutant hSOD1 gene. Eur J Neurosci 2005;22:301-9
  • Koh SH, Roh H, Lee SM, Phosphatidylinositol 3-kinase activator reduces motor neuronal cell death induced by G93A or A4V mutant SOD1 gene. Toxicology 2005;213:45-55
  • Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 1998;273:19929-32
  • Pap M, Cooper GM. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 2002;22:578-86
  • Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-7
  • Dale TC. Signal transduction by the Wnt family of ligands. Biochem J 1998;329(Pt 2):209-23
  • Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci 2002;115:3977-8
  • Kirschenbaum F, Hsu SC, Cordell B, Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J Biol Chem 2001;276:30701-7
  • Phiel CJ, Wilson CA, Lee VM, GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423:435-9
  • Koo EH, Kopan R. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat Med 2004;10(Suppl):S26-33
  • Hu JH, Zhang H, Wagey R, Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem 2003;85:432-42
  • Sugai F, Yamamoto Y, Miyaguchi K, Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci 2004;20:3179-83
  • Endo H, Nito C, Kamada H, Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 2006;26:1479-89
  • Koh SH, Yoo AR, Chang DI, Inhibition of GSK-3 reduces infarct volume and improves neurobehavioral functions. Biochem Biophys Res Commun 2008;371:894-9
  • Romagnani P, Lasagni L, Mazzinghi B, Pharmacological modulation of stem cell function. Curr Med Chem 2007;14:1129-39
  • Song L, De Sarno P, Jope RS. Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 2002;277:44701-8
  • Duka T, Rusnak M, Drolet RE, Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism. FASEB J 2006;20:2302-12
  • Lee KY, Koh SH, Noh MY, Glycogen synthase kinase-3beta activity plays very important roles in determining the fate of oxidative stress-inflicted neuronal cells. Brain Res 2007;1129:89-99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.