381
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Role of microRNAs in the regulation of drug metabolism and disposition

Pages 1513-1528 | Published online: 28 Sep 2009

Bibliography

  • Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 2007;47:566-78
  • Klaassen CD, Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab 2005;6:309-28
  • Gonzalez FJ, Yu AM. Cytochrome P450 and xenobiotic receptor humanized mice. Annu Rev Pharmacol Toxicol 2006;46:41-64
  • Mandlekar S, Hong JL, Kong AN. Modulation of metabolic enzymes by dietary phytochemicals: a review of mechanisms underlying beneficial versus unfavorable effects. Curr Drug Metab 2006;7:661-75
  • Chiang JY. Hepatocyte nuclear factor 4alpha regulation of bile acid and drug metabolism. Expert Opin Drug Metab Toxicol 2009;5:137-47
  • Hobert O. Gene regulation by transcription factors and microRNAs. Science 2008;319:1785-6
  • Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97
  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004;431:343-9
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009;136:642-55
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008;9:102-14
  • Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009;457:405-12
  • Bentwich I, Avniel A, Karov Y, Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766-70
  • Berezikov E, Guryev V, van de Belt J, Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005;120:21-4
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20
  • Friedman RC, Farh KK, Burge CB, Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105
  • Cheng J, Kapranov P, Drenkow J, Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 2005;308:1149-54
  • Mello CC. Return to the RNAi world: rethinking gene expression and evolution (Nobel Lecture). Angew Chem Int Ed Engl 2007;46:6985-94
  • Girard A, Sachidanandam R, Hannon GJ, A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006;442:199-202
  • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10:94-108
  • Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 2009;37:2112-7
  • Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009;75:1374-9
  • Takagi S, Nakajima M, Mohri T, Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 2008;283:9674-80
  • Tsuchiya Y, Nakajima M, Takagi S, MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 2006;66:9090-8
  • Kalscheuer S, Zhang X, Zeng Y, Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)- 1-butanone. Carcinogenesis 2008;29:2394-9
  • Kovalchuk O, Filkowski J, Meservy J, Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008;7:2152-9
  • Zhu H, Wu H, Liu X, Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008;76:582-8
  • Liao R, Sun J, Zhang L, MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 2008;104:805-17
  • To KK, Zhan Z, Litman T, Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 2008;28:5147-61
  • Vreugdenhil E, Verissimo CS, Mariman R, MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 2009;150:2220-8
  • Ji J, Zhang J, Huang G, Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 2009;583:759-66
  • Meng F, Henson R, Lang M, Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006;130:2113-29
  • Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stress. Cancer Res 2006;66:10843-8
  • Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 2007;56:248-53
  • Saito Y, Liang G, Egger G, Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-43
  • Sathyan P, Golden HB, Miranda RC. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 2007;27:8546-57
  • Moffat ID, Boutros PC, Celius T, microRNAs in adult rodent liver are refractory to dioxin treatment. Toxicol Sci 2007;99:470-87
  • Shah YM, Morimura K, Yang Q, Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 2007;27:4238-47
  • Pogribny IP, Tryndyak VP, Boyko A, Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 2007;619:30-7
  • Fukushima T, Hamada Y, Yamada H, Changes of micro-RNA expression in rat liver treated by acetaminophen or carbon tetrachloride--regulating role of micro-RNA for RNA expression. J Toxicol Sci 2007;32:401-9
  • Svoboda M, Izakovicova Holla L, Sefr R, Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol 2008;33:541-7
  • Wang K, Zhang S, Marzolf B, Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 2009;106:4402-7
  • Wu Q, Zhang L, Law PY, Long-term morphine treatment decreases the association of mu-opioid receptor (MOR1) mRNA with polysomes through miRNA23b. Mol Pharmacol 2009;75:744-50
  • Wickramasinghe NS, Manavalan TT, Dougherty SM, Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 2009;37:2584-95
  • Bhat-Nakshatri P, Wang G, Collins NR, Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 2009;37:4850-61
  • Chen H, Wang N, Burmeister M, MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 2009;12:975-81
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-54
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-62
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8
  • Lau NC, Lim LP, Weinstein EG, An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-62
  • Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862-4
  • Lu J, Getz G, Miska EA, MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8
  • Calin GA, Liu CG, Sevignani C, MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004;101:11755-60
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66
  • Lee Y, Jeon K, Lee JT, MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002;21:4663-70
  • Lee Y, Ahn C, Han J, The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9
  • Denli AM, Tops BB, Plasterk RH, Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-5
  • Gregory RI, Yan KP, Amuthan G, The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432:235-40
  • Han J, Lee Y, Yeom KH, The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004;18:3016-27
  • Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004;10:1957-66
  • Lee Y, Kim M, Han J, MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051-60
  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006;13:1097-101
  • Shiohama A, Sasaki T, Noda S, Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007;313:4196-207
  • Berezikov E, Chung WJ, Willis J, Mammalian mirtron genes. Mol Cell 2007;28:328-36
  • Babiarz JE, Ruby JG, Wang Y, Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008;22:2773-85
  • Okamura K, Hagen JW, Duan H, The mirtron pathway generates microRNA-class regulatory RNAs in drosophila. Cell 2007;130:89-100
  • Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature 2007;448:83-6
  • Ender C, Krek A, Friedlander MR, A human snoRNA with microRNA-like functions. Mol Cell 2008;32:519-28
  • Yi R, Qin Y, Macara IG, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-6
  • Lund E, Guttinger S, Calado A, Nuclear export of microRNA precursors. Science 2004;303:95-8
  • Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 2004;32:4776-85
  • Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004;10:185-91
  • Hutvagner G, McLachlan J, Pasquinelli AE, A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-8
  • Salzman DW, Shubert-Coleman J, Furneaux H. P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression. J Biol Chem 2007;282:32773-9
  • Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 2005;19:2979-90
  • Gregory RI, Chendrimada TP, Cooch N, Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-40
  • Mourelatos Z, Dostie J, Paushkin S, miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002;16:720-8
  • Meister G, Landthaler M, Patkaniowska A, Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004;15:185-97
  • Schwarz DS, Hutvagner G, Du T, Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115:199-208
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115:209-16
  • Stark A, Bushati N, Jan CH, A single hox locus in drosophila produces functional microRNAs from opposite DNA strands. Genes Dev 2008;22:8-13
  • Packer AN, Xing Y, Harper SQ, The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 2008;28:14341-6
  • Okamura K, Phillips MD, Tyler DM, The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 2008;15:354-63
  • Jakymiw A, Lian S, Eystathioy T, Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 2005;7:1267-74
  • Liu J, Rivas FV, Wohlschlegel J, A role for the P-body component GW182 in microRNA function. Nat Cell Biol 2005;7:1261-6
  • Behm-Ansmant I, Rehwinkel J, Doerks T, mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 2006;20:1885-98
  • Duursma AM, Kedde M, Schrier M, miR-148 targets human DNMT3b protein coding region. RNA 2008;14:872-7
  • Tay Y, Zhang J, Thomson AM, MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124-8
  • Brennecke J, Stark A, Russell RB, Principles of microRNA-target recognition. PLoS Biol 2005;3:e85
  • Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60
  • Bagga S, Bracht J, Hunter S, Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005;122:553-63
  • Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 2006;103:4034-9
  • Jing Q, Huang S, Guth S, Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005;120:623-34
  • Lim LP, Lau NC, Garrett-Engele P, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769-73
  • Pillai RS, Bhattacharyya SN, Artus CG, Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005;309:1573-6
  • Humphreys DT, Westman BJ, Martin DI, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 2005;102:16961-6
  • Wakiyama M, Takimoto K, Ohara O, Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 2007;21:1857-62
  • Petersen CP, Bordeleau ME, Pelletier J, Short RNAs repress translation after initiation in mammalian cells. Mol Cell 2006;21:533-42
  • Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 2006;13:1108-14
  • Maroney PA, Yu Y, Fisher J, Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 2006;13:1102-7
  • Maragkakis M, Reczko M, Simossis VA, DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 2009;37:w273-6
  • Rusinov V, Baev V, Minkov IN, MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 2005;33:W696-700
  • John B, Enright AJ, Aravin A, Human MicroRNA targets. PLoS Biol 2004;2:e363
  • Enright AJ, John B, Gaul U, MicroRNA targets in drosophila. Genome Biol 2003;5:R1
  • Lall S, Grun D, Krek A, A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 2006;16:460-71
  • Miranda KC, Huynh T, Tay Y, A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006;126:1203-17
  • Rehmsmeier M, Steffen P, Hochsmann M, Fast and effective prediction of microRNA/target duplexes. RNA 2004;10:1507-17
  • Kertesz M, Iovino N, Unnerstall U, The role of site accessibility in microRNA target recognition. Nat Genet 2007;39:1278-84
  • Lewis BP, Shih IH, Jones-Rhoades MW, Prediction of mammalian microRNA targets. Cell 2003;115:787-98
  • Kiriakidou M, Nelson PT, Kouranov A, A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004;18:1165-78
  • Hu Z, Hu B, Collins JF. Prediction of synergistic transcription factors by function conservation. Genome Biol 2007;8:R257
  • Krutzfeldt J, Rajewsky N, Braich R, Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685-9
  • Farh KK, Grimson A, Jan C, The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005;310:1817-21
  • Yu AM. Small interfering RNA in drug metabolism and transport. Curr Drug Metab 2007;8:700-8
  • Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006;34:1646-52
  • Beitzinger M, Peters L, Zhu JY, Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 2007;4:76-84
  • Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA 2007;13:1198-204
  • Karginov FV, Conaco C, Xuan Z, A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 2007;104:19291-6
  • Hendrickson DG, Hogan DJ, Herschlag D, Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 2008;3:e2126
  • Zhang L, Ding L, Cheung TH, Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 2007;28:598-613
  • Vinther J, Hedegaard MM, Gardner PP, Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 2006;34:e107
  • Selbach M, Schwanhausser B, Thierfelder N, Widespread changes in protein synthesis induced by microRNAs. Nature 2008;455:58-63
  • Baek D, Villen J, Shin C, The impact of microRNAs on protein output. Nature 2008;455:64-71
  • Yang Y, Chaerkady R, Beer MA, Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics 2009;9:1374-84
  • Leivonen SK, Makela R, Ostling P, Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 2009. In press
  • Kuhn DE, Martin MM, Feldman DS, Experimental validation of miRNA targets. Methods 2008;44:47-54
  • Hutvagner G, Simard MJ, Mello CC, Sequence-specific inhibition of small RNA function. PLoS Biol 2004;2:E98
  • Meister G, Landthaler M, Dorsett Y, Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 2004;10:544-50
  • Poy MN, Eliasson L, Krutzfeldt J, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226-30
  • Schratt GM, Tuebing F, Nigh EA, A brain-specific microRNA regulates dendritic spine development. Nature 2006;439:283-9
  • Chen JF, Mandel EM, Thomson JM, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33
  • Esau C, Davis S, Murray SF, miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87-98
  • Leaman D, Chen PY, Fak J, Antisense-mediated depletion reveals essential and specific functions of microRNAs in drosophila development. Cell 2005;121:1097-108
  • Felmlee MA, Lon HK, Gonzalez FJ, Cytochrome P450 expression and regulation in CYP3A4/CYP2D6 double transgenic humanized mice. Drug Metab Dispos 2008;36:435-41
  • Granvil CP, Yu AM, Elizondo G, Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos 2003;31:548-58
  • Yu AM, Fukamachi K, Krausz KW, Potential role for human cytochrome P450 3A4 in estradiol homeostasis. Endocrinology 2005;146:2911-9
  • Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 2008;4:1-15
  • Cui XY, Guo YJ, Yao HR. Analysis of microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan Fang Yi Ke Da Xue Xue Bao 2008;28:1813-5
  • Chen GQ, Zhao ZW, Zhou HY, Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol 2009 . In press
  • Jeyaseelan K, Herath WB, Armugam A. MicroRNAs as therapeutic targets in human diseases. Expert Opin Ther Targets 2007;11:1119-29
  • Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009;10:578-85
  • Wang LL, Zhang Z, Li Q, Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 2009;24:562-79

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.