239
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Antioxidant and mitochondrial protective effects of oxidized metabolites of oltipraz

, , & , PhD
Pages 213-224 | Published online: 22 Jan 2010

Bibliography

  • Bueding E, Dolan P, Leroy JP. The antischistosomal activity of oltipraz. Res Commun Chem Pathol Pharmacol 1982;37(2):293-303
  • Roebuck BD, Curphey TJ, Li Y, Evaluation of the cancer chemopreventive potency of dithiolethione analogs of oltipraz. Carcinogenesis 2003;24(12):1919-28
  • Kensler TW. Chemoprevention by inducers of carcinogen detoxication enzymes. Environ Health Perspect 1997;105:965-70
  • Ramos-Gomez M, Kwak MK, Dolan PM, Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 2001;98(6):3410-5
  • Kang KW, Kim YG, Cho MK, Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J 2002;16(14):1988-90
  • Cho IJ, Kim SH, Kim SG. Inhibition of TGFbeta1-mediated PAI-1 induction by oltipraz through selective interruption of Smad 3 activation. Cytokine 2006;35(5-6):284-94
  • Bae EJ, Yang YM, Kim JW, Kim SG. Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway. Hepatology 2007;46(3):730-9
  • Shin SM, Kim SG. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners. Mol Pharmacol 2009;75(1):242-53
  • Bae SK, Lee SJ, Lee JY, Pharmacokinetic changes of oltipraz after intravenous and oral administration to rats with liver cirrhosis induced by dimethylnitrosamine. Int J Pharm 2004;275(1-2):227-38
  • Brock N. Pharmacologic characterization of cyclophosphamide (NSC-26271) and cyclophosphamide metabolites. Cancer Chemother Rep 1967;51:315-25
  • Lloyd KG, Davidson L, Hornykiewicz O. The neurochemistry of Parkinson's disease: effect of L-dopa therapy. J Pharmacol Exp Ther 1975;195(3):453-64
  • Friedman DI, Amidon GL. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm Res 1989;6(12):1043-7
  • Bae SK, Lee SJ, Kim YG, Interspecies pharmacokinetic scaling of oltipraz in mice, rats, rabbits and dogs, and prediction of human pharmacokinetics. Biopharm Drug Dispos 2005;26(3):99-115
  • Langouët S, Furge LL, Kerriguy N, Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane. Chem Res Toxicol 2000;13(4):245-52
  • Rao CV, Rivenson A, Katiwalla M, Chemopreventive effect of oltipraz during different stages of experimental colon carcinogenesis induced by azoxymethane in male F344 rats. Cancer Res 1993;53(11):2502-6
  • Kensler TW, Egner PA, Dolan PM, Mechanism of protection against aflatoxin tumorigenicity in rats fed 5-(2-pyrazinyl)- 4-methyl-1,2-dithiol-3-thione (oltipraz) and related 1,2-dithiol-3-thiones and 1,2-dithiol-3-ones. Cancer Res 1987;47(16):4271-7
  • Langouët S, Coles B, Morel F, Inhibition of CYP1A2 and CYP3A4 by oltipraz results in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture. Cancer Res 1995;55(23):5574-9
  • Wattenberg LW, Bueding E. Inhibitory effects of 5-(2-pyrazinyl)- 4-methyl-1,2-dithiol-3-thione (Oltipraz) on carcinogenesis induced by benzo[a]pyrene, diethylnitrosamine and uracil mustard. Carcinogenesis 1986;7(8):1379-81
  • Bieder A, Decouvelaere B, Gaillard C, Comparison of the metabolism of oltipraz in the mouse, rat and monkey and in man. Distribution of the metabolites in each species. Arzneimittelforschung 1983;33(9):1289-97
  • O'Dwyer PJ, Clayton M, Halbherr T, Cellular kinetics of induction by oltipraz and its keto derivative of detoxication enzymes in human colon adenocarcinoma cells. Clin Cancer Res 1997;3(5):783-91
  • Maxuitenko YY, Libby AH, Joyner HH, Identification of dithiolethiones with better chemopreventive properties than oltipraz. Carcinogenesis 1998;19(9):1609-15
  • Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci USA 1988;85(21):8261-5
  • Ko MS, Lee SJ, Kim JW, Differential effects of the oxidized metabolites of oltipraz on the activation of CCAAT/enhancer binding protein-beta and NF-E2-related Factor-2 for GSTA2 gene induction. Drug Metab Dispos 2006;34(8):1353-60
  • Navamal M, McGrath C, Stewart J, Thiolytic chemistry of alternative precursors to the major metabolite of the cancer chemopreventive oltipraz. J Org Chem 2002;67(26):9406-13
  • Velayutham M, Muthukumaran RB, Sostaric JZ, Interactions of the major metabolite of the cancer chemopreventive drug oltipraz with cytochrome c: A novel pathway for cancer chemoprevention. Free Radic Biol Med 2007;43(7):1076-85
  • Pereverzev MO, Vygodina TV, Konstantinov AA, Skulachev VP. Cytochrome c, an ideal antioxidant. Biochem Soc Trans 2003;31(Pt6):1312-5
  • Kagan VE, Borisenko GG, Tyurina YY, Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 2004;37(12):1963-85
  • Prindull G. Apoptosis in the embryo and tumorigenesis. Eur J Cancer 1995;31A(1):116-23
  • Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest 1982;47(5):412-26
  • Esposti MD. The roles of Bid. Apoptosis 2002; 7(5):433-40
  • Cross CE, Halliwell B, Borish ET, Oxygen radicals and human disease. Ann Intern Med 1987;107(4):526-45
  • Padayatty SJ, Katz A, Wang Y, Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003;22(1):18-35
  • Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 1993;300(2):535-43
  • Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol 2009;76(4):884-95
  • Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008;591(1-3):66-72
  • Martinez J, Moreno JJ. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem Pharmacol 2002;59(7):865-70
  • Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci 2008;1147:37-52
  • Tyler DD. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 1975;147(3):493-504
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59(3):527-605
  • Banki K, Hutter E, Gonchoroff NJ, Perl A. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 1999;162(3):1466-79
  • Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 1998;273(19):11401-4
  • Von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99(22):2934-41
  • Kwon YN, Shin SM, Cho IJ, Kim SG. Oxidized metabolites of oltipraz exert cytoprotective effects against arachidonic acid through AMPK-dependent cellular antioxidant effect and mitochondrial protection. Drug Metab Dispos 2009;37(6):1187-97
  • Talalay P, Fahey JW, Holtzclaw WD, Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett 1995;82-83:173-9
  • Matés JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000;153(1-3):83-104
  • Clapper ML. Chemopreventive activity of oltipraz. Pharmacol Ther 1998;78(1):17-27
  • Cantelli-Forti G, Hrelia P, Paolini M. The pitfall of detoxifying enzymes. Mutat Res 1998;402(1-2):179-83
  • Egner PA, Kensler TW, Prestera T, Regulation of phase 2 enzyme induction by oltipraz and other dithiolethiones. Carcinogenesis 1994;15(2):177-81
  • Kang KW, Cho IJ, Lee CH, Kim SG. Essential role of phosphatidylinositol 3-kinase-dependent CCAAT/enhancer binding protein beta activation in the induction of glutathione S-transferase by oltipraz. J Natl Cancer Inst 2003;95(1):53-66
  • Petzer JP, Navamal M, Johnson JK, Phase 2 enzyme induction by the major metabolite of oltipraz. Chem Res Toxicol 2003;16(11):1463-9
  • Manandhar S, Cho JM, Kim JA, Induction of Nrf2-regulated genes by 3H-1,2-dithiole-3-thione through the ERK signaling pathway in murine keratinocytes. Eur J Pharmacol 2007;577(1-3):17-27
  • Bolton MG, Munoz A, Jacobson LP, Transient intervention with oltipraz against aflatoxin-induced hepatic tumorigenesis. Cancer Res 1993;53(15):3499-504
  • Morel F, Fardel O, Meyer DJ, Preferential increase of glutathione S-transferase class alpha transcripts in cultured human hepatocytes by phenobarbital, 3-methylcholanthrene, and dithiolethiones. Cancer Res 1993;53(2):231-4
  • Primiano T, Egner PA, Sutter TR, Intermittent dosing with oltipraz: relationship between chemoprevention of aflatoxin-induced tumorigenesis and induction of glutathione S-transferases. Cancer Res 1995;55(19):4319-24
  • Itoh K, Ishii T, Wakabayashi N, Yamamoto M. Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 1999;31(4):319-24
  • Motohashi H, Yamamoto M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004;10(11):549-57
  • Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002;365(3):561-75
  • Buck M, Chojkier M. C/EBPbeta modulates cell proliferation and survival. Hepatology 2003;37(4):731-8
  • Kim W, Gates KS. Evidence for thiol-dependent production of oxygen radicals by 4-methyl- 5-pyrazinyl-3H-1,2-dithiole-3-thione (oltipraz) and 3H-1,2-dithiole-3-thione: possible relevance to the anticarcinogenic properties of 1,2-dithiole-3-thiones. Chem Res Toxicol 1997;10(3):296-301
  • Velayutham M, Villamena FA, Fishbein JC, Zweier JL. Cancer chemopreventive oltipraz generates superoxide anion radical. Arch Biochem Biophys 2005;435(1):83-8
  • Auyeung DJ, Kessler FK, Ritter JK. Mechanism of rat UDP-glucuronosyltransferase 1A6 induction by oltipraz: evidence for a contribution of the aryl hydrocarbon receptor pathway. Mol Pharmacol 2003;63(1):119-27
  • Yates MS, Kwak MK, Egner PA, Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res 2006;66(4):2488-94
  • Alam J, Wicks C, Stewart D, Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem 2000;275(36):27694-702
  • Stewart D, Killeen E, Naquin R, Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 2003;278(4):2396-402
  • Purdom-Dickinson SE, Sheveleva EV, Sun H, Chen QM. Translational control of Nrf2 protein in activation of antioxidant response by oxidants. Mol Pharmacol 2007;72(4):1074-81
  • Mink S, Haenig B, Klempnauer KH. Interaction and functional collaboration of p300 and C/EBPbeta. Mol Cell Biol 1997;17(11):6609-17
  • Katoh Y, Itoh K, Yoshida E, Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 2001;6(10):857-68
  • Marchetti P, Castedo M, Susin SA, Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996;184(3):1155-60
  • Kantrow SP, Piantadosi CS. Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun 1997;232(3):669-71
  • Bernardi P, Vassanelli S, Veronese P, Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 1992;267(5):2934-9
  • Javadov S, Karmazyn M, Escobales N. Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 2009;330(3):670-8
  • Bradham CA, Qian T, Streetz K, The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 1998;18(11):6353-64
  • Piret JP, Arnould T, Fuks B, Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochem Pharmacol 2003;67(4):611-20
  • Zoratti M, Szabo I. The mitochondrial permeability transition. Biochem Biophys Acta 1995;1241(2):139-76
  • Li P, Nijhawan D, Budihardjo I, Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91(4):479-89
  • Connern CP, Halestrap AP. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 1992;284(2):381-5
  • Halestrap AP, Kerr PM, Javadov S, Woodfield KY. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1998;1366(1-2):79-94
  • Halestrap AP, Davidson AM. Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 1990;268(1):153-60
  • Woodfield K, Rück A, Brdiczka D, Halestrap AP. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 1998;336(2):287-90
  • LeQuoc K, LeQuoc D. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial innermembrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 1988;265(2):249-57
  • Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 1988;255(1):357-60
  • Basso E, Fante L, Fowlkes J, Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 2005;280(19):18558-61
  • Baines CP, Kaiser RA, Purcell NH, Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005;434(7033):658-62
  • Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 2002;277(38):34793-9
  • Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 2006;34(2):232-7
  • Kokoszka JE, Waymire KG, Levy SE, The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004;427(6973):461-5
  • Shimizu S, Matsuoka Y, Shinohara Y, Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 2001;152(2):237-50
  • Baines CP, Kaiser RA, Sheiko T, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 2007;9(5):550-5
  • Lage R, Dieguez C, Vidal-Puig A, Lopez M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 2008;14(12):539-49
  • Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007;100(3):328-41
  • Woods A, Johnstone SR, Dickerson K, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003;13(22):2004-8
  • Hawley SA, Pan DA, Mustard KJ, Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2005;2(1):9-19
  • Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 2006;281(35):25336-43
  • Davies SP, Helps NR, Cohen PT, Hardie DG. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Calpha and native bovine protein phosphatase-2Ac. FEBS Lett 1995;377(3):421-5
  • Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem 2006;75:137-63
  • Xie Z, Zhang J, Wu J, Up-regulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes 2008;57(12):3222-30
  • Huang Q, Wu YT, Tan HL, A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 2009;16(2):264-77
  • Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 2007;104(17):7217-22
  • Murase T, Misawa K, Haramizu S, Hase T. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 2009;78(1):78-84
  • Collins SP, Reoma JL, Gamm DM, Uhler MD. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 2000;345(3):673-80
  • Sapkota GP, Kieloch A, Lizcano JM, Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90rsk and cAMP-dependent protein kinase, but not its farnesylation at Cys433, is essential for LKB1 to suppress cell growth. J Biol Chem 2001;276(22):19469-82
  • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003;17(15):1829-34
  • Kim YW, Lee SM, Shin SM, Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury. Free Radic Biol Med 2009;47(7):1082-92
  • Bae EJ, Yang YM, Kim SG. Abrogation of hyperosmotic impairment of insulin signaling by a novel class of 1,2-dithiole-3-thiones through the inhibition of S6K1 activation. Mol Pharmacol 2008;73(5):1502-12
  • Cocco T, Di Paola M, Papa S, Lorusso M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med 1999;27(1-2):51-9
  • Scorrano L, Oakes SA, Opferman JT, BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300(5616):135-9
  • Hinke SA, Martens GA, Cai Y, Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 2007;150(8):1031-43
  • Blättler SM, Rencurel F, Kaufmann MR, Meyer UA. In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci USA 2007;104(3):1045-50
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995;64:97-112
  • Krall J, Bagley AC, Mullenbach GT, Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J Biol Chem 1988;263(4):1910-4
  • Dryer SE, Dryer RL, Autor AP. Enhancement of mitochondrial, cyanide-resistant superoxide dismutase in the livers of rats treated with 2,4-dinitrophenol. J Biol Chem 1980;255(3):1054-7
  • Antras-Ferry J, Mahéo K, Chevanne M, Oltipraz stimulates the transcription of the manganese superoxide dismutase gene in rat hepatocytes. Carcinogenesis 1997;18(11):2113-7
  • Kukidome D, Nishikawa T, Sonoda K, Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 2006;55(1):120-7
  • Capdevila J, Parkhill L, Chacos N, The oxidative metabolism of arachidonic acid by purified cytochromes P-450. Biochem Biophys Res Commun 1981;101(4):1357-63
  • Bauskin AR, Alkalay I, Ben-Neriah Y. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell 1991;66(4):685-96
  • Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992;257(5076):1496-502
  • Bader M, Muse W, Ballou DP, Oxidative protein folding is driven by the electron transport system. Cell 1999;98(2):217-27
  • Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005;74:739-89
  • Heath-Engel HM, Chang NC, Shore GC. The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 2008;27(50):6419-33
  • Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 2007;18(6):716-31
  • Hacki J, Egger L, Monney L, Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 2000;19(19):2286-95
  • Jimbo A, Fujita E, Kouroku Y, ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 2003;283(2):156-66
  • Masud A, Mohapatra A, Lakhani SA, Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem 2007;282(19):14132-9
  • Di Sano F, Ferraro E, Tufi R, Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 2006;281(5):2693-700
  • Shiraishi H, Okamoto H, Yoshimura A, Yoshida H. ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 2006;119(19):3958-66
  • Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 2007;131(3):596-610
  • Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 2004;6(11):1129-34
  • Lim JH, Lee HJ, Ho Jung M, Song J. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal 2009;21(1):169-77
  • Ozcan U, Cao Q, Yilmaz E, Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004;306(5695):457-61
  • Jacobson LP, Zhang BC, Zhu YR, Oltipraz chemoprevention trial in Qidong, People's Republic of China: study design and clinical outcomes. Cancer Epidemiol Biomark Prev 1997;6(4):257-65
  • Wang JS, Shen X, He X, Protective alterations in phase 1 and 2 metabolism of aflatoxin B1 by oltipraz in residents of Qidong, People's Republic of China. J Natl Cancer Inst 1999;91(4):347-54
  • O'Dwyer PJ, Szarka C, Brennan JM, Pharmacokinetics of the chemopreventive agent oltipraz and of its metabolite M3 in human subjects after a single oral dose. Clin Cancer Res 2000;6(12):4692-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.