901
Views
126
CrossRef citations to date
0
Altmetric
Reviews

Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation

, PhD (Assistant Professor)
Pages 115-131 | Published online: 12 Jan 2010

Bibliography

  • Isin EM, Guengerich FP. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta 2007;1770:314-29
  • Anzenbacher P, Anzenbacherova F. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 2001;58:737-47
  • Available from: http://drnelson.utmem.edu/CytochromeP450.html
  • Coon MJ. Cytochrome P450: nature's most versatile biological catalyst. Ann Rev Pharmacol Toxicol 2005;45:1-25
  • Murataliev MB, Klein M, Fulco A, Feyereisen R. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Biochemistry 1997;36:8401-12
  • Sligar SG. Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 1976;615:5399-406
  • Braeuning A. Regulation of cytochrome P450 expression by Ras- and beta-catenin-dependent signaling. Curr Drug Metab 2009;10:138-58
  • Davydov DR, Halpert JR. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 2008;4:1523-35
  • Tracy TS. Atypical cytochrome P450 kinetics: implications for drug discovery. Drugs RD 2006;7:349-63
  • Boobis A, Watelet JB, Whomsley R, Drug interactions. Drug Metab Rev 2009;41:486-52
  • Zhao YH, Halpert JR. Structure-function analysis of cytochromes P450 2B. Arch Biochem Biophys 2007;1770:402-12
  • Guengerich FP. Cytochrome P450 enzymes in the generation of commercial products. Nat Rev Drug Discov 2002;1:359-66
  • Guengerich FP. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 2003;409:59-71
  • Urlacher VB, Lutz-Wahl S, Schmid RD. Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 2004;64:317-25
  • Gillam EM. Exploring the potential of xenobiotic-metabolising enzymes as biocatalysts: evolving designer catalysts from polyfunctional cytochrome P450 enzymes. Clin Exp Pharmacol Physiol 2005;32:147-52
  • Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotechnol 2006;124:128-45
  • McLean KJ, Girvan HM, Munro AW. Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects. Expert Opin Drug Metab Toxicol 2007;3:847-63
  • Julsing MK, Cornelissen S, Bühler B, Schmid A. Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 2008;12:177-86
  • Morant M, Bak S, Møller BL, Werck-Reichhart D. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 2003;14:151-62
  • Gillam EM. Engineering cytochrome P450 enzymes. Chem Res Toxicol 2008;21:220-31
  • Abhilash PC, Jamil S, Singh N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 2009;27:474-88
  • Chen L, Waxman DJ. Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer. Curr Pharm Des 2002;8:1405-16
  • Dachs GU, Tupper J, Tozer GM. From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs 2005;16:349-59
  • Roy P, Waxman DJ. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Toxicol In Vitro 2006;20:176-86
  • Sonomoto K, Hoq MM, Tanaka A, Fukui S. 11beta-Hydroxylation of cortexolone (reichstein compound S) to hydrocortisone by curvularia lunata entrapped in photo-cross-linked resin gels. Appl Environ Microbiol 1983;45:436-43
  • Available from: http://www.schering.de
  • Fujii T, Fujii Y, Machida K, Efficient biotransformations using Escherichia coli with tolC acrAB mutations expressing cytochrome P450 genes. Biosci Biotechnol Biochem 2009;73:805-10
  • Falck JR, Reddya YK, Hainesa DC, Practical enantiospecific syntheses of 14,15-EET and leukotoxin B (vernolic acid). Tetrahedron Lett 2001;42:4131-33
  • Shafiee A, Hutchinson CR. Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from saccharopolyspora erythraea (streptomyces erythreus). Biochemistry 1987;26:6204-10
  • Jennewein S, Rithner CD, Williams RM, Croteau RB. Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 2001;98:13595-600
  • van Beilen JB, Holtackers R, Lüscher D, Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in pseudomonas putida. Appl Environ Microbiol 2005;71:1737-44
  • Vail RB, Homann MJ, Hanna I, Zaks A. Preparative synthesis of drug metabolites using human cytochrome P450s 3A4, 2C9, and 1A2 with NADPH-P450 reductase expressed in escherichia coli. J Ind Microbiol Biotechnol 2005;32:67-74
  • Lamb SB, Lamb DC, Kelly SL, Stuckey DC. Cytochrome P450 immobilization as a route to bioremediation/biocatalysis. FEBS Lett 1998;431:343-46
  • Ueda Y, Morigaki K, Tatsu Y, Immobilization and activity assay of cytochrome P450 on patterned lipid membranes. Biochem Biophys Res Commun 2007;355:926-31
  • Nicoli R, Bartolini M, Rudaz S, Development of immobilized enzyme reactors based on human recombinant cytochrome P450 enzymes for phase I drug metabolism studies. J Chromatogr A 2008;1206:2-10
  • Gannett PM, Kabulski J, Perez FA, Preparation, characterization, and substrate metabolism of gold-immobilized cytochrome P450 2C9. J Am Chem Soc 2006;128:8374-75
  • Mie Y, Suzuki M, Komatsu Y. Electrochemically driven drug metabolism by membranes containing human cytochrome P450. J Am Chem Soc 2009;131:6646-7
  • Royo JL, Moreno-Ruiz E, Cebolla A, Santero E. Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit. J Biotechnol 2005;116:113-24
  • Gillam EM, Aguinaldo AM, Notley LM, Formation of indigo by recombinant mammalian cytochrome P450. Biochem Biophys Res Commun 1999;265:469-72
  • Warzecha H, Frank A, Peer M, Formation of the indigo precursor indican in genetically engineered tobacco plants and cell cultures. Plant Biotechnol J 2007;5:185-91
  • Gillam EM, Guengerich FP. Exploiting the versatility of human cytochrome P450 enzymes: the promise of blue roses from biotechnology. IUBMB Life 2001;52:271-77
  • Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000;59:961-72
  • Huang Z, Raychowdhury MK, Waxman DJ. Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model. Cancer Gene Ther 2000;7:1034-42
  • Jounaidi Y, Hecht JE, Waxman DJ. Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res 1998;58:4391-401
  • Jounaidi Y, Waxman DJ. Use of replication-condition adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes in cancer therapy. Cancer Res 2004;64:292-303
  • Chen CS, Lin JT, Goss KA, Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol Pharmacol 2004;65:1278-85
  • Chen CS, Jounaidi Y, Waxman DJ. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos 2005;33:1261-67
  • Chang TK, Yu L, Goldstein JA, Waxman DJ. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 1997;7:211-21
  • Jounaidi Y, Waxman DJ. Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P450 reductase-based cancer gene therapy. Cancer Res 2001;61:4437-44
  • Hunt S. Technology evaluation: MetXia-P450. Oxford Biomedica. Curr Opin Mol Ther 2001;3:595-98
  • Jounaidi Y, Chen CS, Veal GJ, Waxman DJ. Enhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydroxylase P450 2B11. Mol Cancer Ther 2006;5:541-55
  • Ma Y, Waxman DJ. Collaboration between hepatic and intratumoral prodrug activation in a P450 prodrug-activation gene therapy model for cancer treatment. Mol Cancer Ther 2007;6:2879-90
  • Chen CS, Jounaidi Y, Su T, Waxman DJ. Enhancement of intratumoral cyclophosphamide pharmacokinetics and antitumor activity in a P450 2B11-based cancer gene therapy model. Cancer Gene Ther 2007;14:935-44
  • Bistolas N, Wollenberger U, Jung C, Scheller FW. Cytochrome P450 biosensors-a review. Biosens Bioelectron 2005;20:2408-23
  • Bozina N, Bradamante V, Lovrić M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol 2009;60:217-42
  • Alonso-Lomillo MA, Yardimci C, Domínguez-Renedo O, Arcos-Martínez MJ. CYP450 2B4 covalently attached to carbon and gold screen printed electrodes by diazonium salt and thiols monolayers. Anal Chim Acta 2009;633:51-6
  • Ignaszak A, Hendricks N, Waryo T, Novel therapeutic biosensor for indinavir-a protease inhibitor antiretroviral drug. J Pharm Biomed Anal 2009;49:498-501
  • Ferrero VE, Andolfi L, Di Nardo G, Protein and electrode engineering for the covalent immobilization of P450 BMP on gold. Anal Chem 2008;80:8438-46
  • Carrara S, Shumyantseva VV, Archakov AI, Samorì B. Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosens Bioelectron 2008;24:148-50
  • Alonso-Lomillo MA, Gonzalo-Ruiz J, Domínguez-Renedo O, CYP450 biosensors based on gold chips for antiepileptic drugs determination. Biosens Bioelectron 2008;23:1733-37
  • Liu S, Peng L, Yang X, Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 2008;375:209-16
  • Iwuoha E, Ngece R, Klink M, Baker P. Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: a selective serotonin reuptake inhibitor. IET Nanobiotechnol 2007;1:62-7
  • Shumyantseva VV, Bulko TV, Archakov AI. Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors. J Inorg Biochem 2005;99:1051-63
  • Paternolli C, Antonini M, Ghisellini P, Nicolini C. Recombinant cytochrome p450 immobilization for biosensor applications. Langmuir 2004;20:11706-12
  • Fantuzzi A, Meharenna YT, Briscoe PB, Improving catalytic properties of P450BM3 haem domain electrodes by molecular Lego. Chem Commun (Camb) 2006;28:1289-91
  • Vehlow J, Bergfeldt B, Hunsinger H. PCDD/F and related compounds in solid residues from municipal solid waste incineration–a literature review. Waste Manag Res 2006;24:404-20
  • Ishaq R, Näf C, Zebühr Y, PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples–patterns and variations. Chemosphere 2003;50:1131-50
  • Sakaki T, Shinkyo R, Takita T, Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily. Arch Biochem Biophys 2002;401:91-8
  • Shinkyo R, Sakaki T, Takita T, Generation of 2,3,7,8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis. Biochem Biophys Res Commun 2003;308:511-7
  • Shinkyo R, Kamakura M, Ikushiro S, Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant. Appl Microbiol Biotechnol 2006;72:584-90
  • Preston BD, Allen JR. 2,2′,5,5′-Tetrachlorobiphenyl: isolation and identification of metabolites generated by rat liver microsomes. Drug Metab Dispos 198;08:197-203
  • Waller SC, He YA, Harlow GR, 2,2′,3,3′,6,6′-hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. Chem Res Toxicol 1999;12:690-9
  • Billet S, Abbas I, Le Goff J, Genotoxic potential of polycyclic aromatic hydrocarbons-coated onto airborne Particulate Matter (PM 2.5) in human lung epithelial A549 cells. Cancer Lett 2008;270:144-55
  • Morant M, Bak S, Møller BL, Werck-Reichhart D. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 2003;14:151-62
  • Van Aken B. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 2009;20:231-36
  • Abhilash PC, Jamil S, Singh N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 2009;27:474-88
  • Kawahigashi H. Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 2009;20:225-30
  • Inui H, Ohkawa H. Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manag Sci 2005;61:286-91
  • Rylott EL, Jackson RG, Edwards J, An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 2006;24:216-19
  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem 2006;54:2985-91
  • Kawahigashia H, Hirosea S, Ohkawab H, Ohkawa Y. Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 2007;25:75-84
  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J Mol Microbiol Biotechnol 2008;15:212-19
  • James CA, Xin G, Doty SL, Strand SC. Degradation of low molecular weight volatile organic compounds by plants genetically modified with mammalian cytochrome P450 2E1. Environ Sci Technol 2008;42:289-93
  • Munro AW, Girvan HM, McLean KJ. Cytochrome P450-redox partner fusion enzymes. Biochim Biophys Acta 2007;1770:345-59
  • Cheng J, Wan DF, Gu JR, Establishment of a yeast system that stably expresses human cytochrome P450 reductase: application for the study of drug metabolism of cytochrome P450s in vitro. Protein Expr Purif 2006;47:467-76
  • Peters FT, Dragan CA, Kauffels A, Biotechnological synthesis of the designer drug metabolite 4′-hydroxymethyl-alpha- pyrrolidinohexanophenone in fission yeast heterologously expressing human cytochrome P450 2D6–a versatile alternative to multistep chemical synthesis. J Anal Toxicol 2009;33:190-7
  • Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 2008;259:1-15
  • Parikh A, Gillam EM, Guengerich FP. Drug metabolism by escherichia coli expressing human cytochromes P450. Nat Biotechnol 1997;15:784-8
  • Kumar S, Halpert JR. Use of directed evolution of mammalian cytochromes P450 for investigating the molecular basis of enzyme function and generating novel biocatalysts. Biochem Biophys Res Commun 2006;338:456-64
  • Otey CR, Landwehr M, Endelman JB, Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol 2006;4:e112
  • Rosic NN, Huang W, Johnston WA, Extending the diversity of cytochrome P450 enzymes by DNA family shuffling. Gene 2007;395:40-8
  • Ivanciuc O, Oezguen N, Mathura VS, Using property based sequence motifs and 3D modeling to determine structure and functional regions of proteins. Curr Med Chem 2004;11:583-93
  • Ivanciuc O, Braun W. Robust quantitative modeling of peptide binding affinities for MHC molecules using physical-chemical descriptors. Protein Pept Lett 2007;14:903-16
  • Negi SS, Braun W. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. J Mol Model 2007;13:1157-67
  • Oezguen N, Kumar S, Hindupur A, Identification and analysis of conserved motifs in cytochrome P450 family 2: functional role of a motif 187RFDYKD192 in P450 2B enzymes. J Biol Chem 2008;283:21808-16
  • Yuen CM, Liu DR. Dissecting protein structure and function using directed evolution. Nat Methods 2007;4:995-7
  • Woycechowsky KJ, Vamvaca K, Hilvert D. Novel enzymes through design and evolution. Adv Enzymol Relat Areas Mol Biol 2007;75:241-94
  • Joo H, Lin Z, Arnold FH. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 1999;399:670-2
  • Schwaneberg U, Otey C, Cirino PC, Cost-effective whole-cell assay for laboratory evolution of hydroxylases in escherichia coli. J Biomol Screen 2001;6:111-7
  • Kumar S, Chen CS, Waxman DJ, Halpert JR. Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. J Biol Chem 2005;280:9569-75
  • Kumar S, Liu H, Halpert JR. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substarte oxidation using directed evolution and site-directed mutagenesis. Drug Metab Dispos 2006;34:1958-65
  • Kim D, Guengerich FP. Enhancement of 7-methoxyresorufin O-demethylation activity of human cytochrome P450 1A2 by molecular breeding. Arch Biochem Biophys 2004;432:102-8
  • Kim D, Guengerich FP. Analysis of coumarin 7-hydroxylation activity of cytochrome P450 2A6 using random mutagenesis. J Biol Chem 2005;280:40319-27
  • Kumar S. Identification of a novel laser dye substrate of mammalian cytochromes P450: application in rapid kinetic analysis, inhibitor screening, and directed evolution. J Biolmol Screen 2007;12:677-82
  • Salazar O, Cirino PC, Arnold FH. Thermostabilization of a cytochrome P450 peroxygenase. ChemBioChem 2003;4:891-3
  • Wong TS, Arnold FH, Schwaneberg U. Laboratory evolution of cytochrome P450BM3 monooxygenase for organic cosolvents. Biotechnol Bioeng 2004;85:351-8
  • Kumar S, Sun L, Liu H, Engineering mammalian cytochrome P450 2B1 by directed evolution for enhanced catalytic tolerance to temperature and dimethyl sulfoxide. Protein Eng Des Sel 2006;19:547-54
  • Aucamp JP, Cosme AM, Lye GJ, Dalby PA. High-throughput measurement of protein stability in microtiter plates. Biotechnol Bioeng 2005;89:599-607
  • Bergquist PL, Hardiman EM, Ferrari BC, Winsley T. Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles 2009;13:389-401
  • Bershtein S, Tawfik DS. Advances in laboratory evolution in enzymes. Cur Opin Chem Biol 2008;12:151-8
  • Gupta RD, Tawfik DS. Directed enzyme evolution via small and effective neutral drift libraries. Nat Methods 2008;5:939-42
  • Farinas ET, Schwaneberg U, Glieder A, Arnond FH. Directed evolution of a cytochrome P450 mooxygenase for alkane oxidation. Adv Synth Catal 2001;343:601-6
  • Glieder A, Farinas ET, Arnold FH. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 2002;20:1135-9
  • Cirino PC, Arnold FH. A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed 2003;42:3299-301
  • Peters MW, Meinhold P, Glieder A, Arnold FH. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450BM3. J Am Chem Soc 2003;125:13442-50
  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. Proc Natl Acad Sci USA 2006;103:5869-74
  • Meinhold P, Peters MW, Chen MMY, Direct conversion of ethane to ethanol by engineered cytochrome P450BM3. ChemBioChem 2005;6:1765-68
  • Otey CR, Bandara G, Lalonde J, Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol Bioeng 2005;93:494-9
  • Landwehr M, Hochrein L, Otey CR, Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450BM3. J Am Chem Soc 2006;128:6058-9
  • Kubo T, Peters MW, Meinhold P, Arnold FH. Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450BM3. Chemistry 2006;12:1216-20
  • Fasan R, Chen MM, Crook NC, Arnold FH. Engineered alkane-hydroxylating cytochrome P450BM3 exhibiting native-like catalytic properties. Angew Chem Int Ed Engl 2007;46:8414-8
  • Li HM, Mei LH, Urlacher VB, Schmid RD. Cytochrome P450BM3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst. Appl Biochem Biotechnol 2008;144:27-36
  • Damsten MC, van Vugt-Lussenburg BMA, Zeldenthuis T, Application of drug metabolizing mutants of cytochrome P450BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites. Chem Biol Interact 2008;171:96-107
  • Whitehouse CJ, Bell SG, Yang W, A highly active single-mutation variant of P450BM3 (CYP102A1). Chembiochem 2009;10:1654-6
  • Whitehouse CJ, Bell SG, Tufton HG, Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem Commun (Camb) 2008;28:966-8
  • Walsh ME, Kyritsis P, Eady NA, Catalytic reductive dehalogenation of hexachloroethane by molecular variants of cytochrome P450CAM (CYP101). Eur J Biochem 2000;67:5815-20
  • Bell SG, Stevenson JA, Boyd HD, Butane and propane oxidation by engineered cytochrome P450CAM. Chem Commun (Camb) 2002;7:490-1
  • Jones JP, O'Hare EJ, Wong LL. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450CAM). Eur J Biochem 2001;268:1460-7
  • Harford-Cross CF, Carmichael AB, Allan FK, Protein engineering of cytochrome P450CAM (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 2000;13:121-8
  • Bell SG, Harford-Cross CF, Wong LL. Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng 2001;14:797-802
  • Xu F, Bell SG, Lednik J, The heme monooxygenase cytochrome P450CAM can be engineered to oxidize ethane to ethanol. Angew Chem Int Ed Engl 2005;44:4029-32
  • Nakamura K, Martin MV, Guengerich FP. Random mutagenesis of human cytochrome P450 2A6 and screening with indole oxidation products. Arch Biochem Biophys 2001;395:25-31
  • Yun CH, Miller MP, Guengerich FH. Rate-determining steps in phenacetin oxidations by human cytochrome P450 1A2 and selected mutants. Biochemistry 2000;39:11319-29
  • Kim D, Guengerich FP. Selection of human cytochrome P450 1A2 mutants with enhanced catalytic activity for heterocyclic amine N-hydroxylation. Biochemistry 2004;43:981-8
  • Wu Z, Guengerich FP. Expansion of substrate specificity of cytochrome P450 2A6 by random and site-directed mutagenesis. J Biol Chem 2005;280:41090-100
  • Zhang ZG, Liu Y, Guengerich FP, Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries. J Biotechnol 2009;139:12-8
  • Scott EE, Spatzenegger M, Halpert JR. A truncation of 2B subfamily cytochromes P450 yields increased expression levels, increased solubility, and decreased aggregation while retaining function. Arch Biochem Biophys 2001;395:57-68
  • Cosme J, Johnson EF. Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J Biol Chem 2000;275:2545-53
  • Williams PA, Cosme J, Sridhar V, Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 2000;5:121-31
  • Johnson EF, Stout CD. Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem Biophys Res Commun 2005;338:331-6
  • Scott EE, Halpert JR. Structures of cytochrome P450 3A4. Trends Biochem Sci 2005;30:5-7
  • Kumar S, Zhao Y, Sun L, Engineering human cytochrome P450 2B6 for enhanced expression and stability: importance of Leu264→Phe substitution. Mol Pharmacol 2007;72:1191-9
  • Sun L, Chen CS, Waxman DJ, Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide. Arch Biochem Biophys 2007;458:167-74
  • Domanski TL, Halpert JR. Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr Drug Metab 2001;2:117-37
  • Kumar S, Scott EE, Liu H, Halpert JR. A rational approach to re-engineer cytochrome P450 2B1 regioselectivity based on the crystal structure of cytochrome P450 2C5. J Biol Chem 2003;278:17178-84
  • Scott EE, He YQ, Halpert JR. Substrate routes to the buried active site may vary among cytochromes P450: mutagenesis of the F-G region in P450 2B1. Chem Res Toxicol 2002;15:1407-13
  • Hernandez CE, Kumar S, Liu H, Halpert JR. Investigation of the role of cytochrome P450 2B4 active site residues in substrate metabolism based on crystal structures of the ligand-bound enzyme. Arch Biochem Biophys 2006;455:61-7
  • Gillam EM. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 2007;464:176-86
  • Huang W, Johnston WA, Hayes MA, A shuffled CYP2C library with a high degree of structural integrity and functional versatility. Arch Biochem Biophys 2007;467:193-205
  • Johnston WA, Huang W, De Voss JJ, A shuffled CYP1A library shows both structural integrity and functional diversity. Drug Metab Dispos 2007;35:2177-85
  • Johnston WA, Huang W, De Voss JJ, Quantitative whole-cell cytochrome P450 measurement suitable for high-throughput application. J Biomol Screen 2008;13:135-41
  • Keizers PH, Schraven LH, de Graaf C, Role of the conserved threonine 309 in mechanism of oxidation by cytochrome P450 2D6. Biochem Biophys Res Commun 2005;338:1065-74
  • Kumar S, Davydov DR, Halpert JR. Role of cytochrome b5 in modulating peroxide-supported CYP3A4 activity: evidence for a conformational transition and cytochrome P450 heterogeneity. Drug Metab Dispos 2005;33:1131-6
  • Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
  • Baillie TA. Metabolism and toxicity of drugs: two decades of progress in industrial drug metabolism. Chem Res Toxicol 2008;21:129-37
  • Hara M, Iazvovskaia S, Ohkawa H, Immobilization of P450 monooxygenase and chloroplast for use in light-driven bioreactors. J Biosci Bioeng 1999;87:793-7
  • Döhr O, Paine MJI, Friedberg T, Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci USA 2001;98:81-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.