489
Views
87
CrossRef citations to date
0
Altmetric
Reviews

Online electrochemistry/mass spectrometry in drug metabolism studies: principles and applications

&
Pages 715-731 | Published online: 07 Apr 2010

Bibliography

  • Munos B. Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 2009;8:959-68
  • Iyer R, Zhang D. Staging and types of drug metabolism studies. In: Zhang D, Zhu M, Humphreys WG, editors, Drug metabolism in drug design and development. Hoboken, Wiley & Sons, Inc., New Jersey; 2007. p. 265
  • Liebler DC, Guengerich FP. Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 2005;4:410-20
  • Park BK, Kitteringham NR, Williams DP, The role of metabolic activation in drug-induced hepatoxicity. Annu Rev Pharmacol Toxicol 2005;45:177-202
  • Kalgutar LS, Gardner I, Harriman SP, A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 2004;44:379-424
  • Ortiz de Montellano PR, De Voss JJ. Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor, Cytochrome P450: structure, mechanism, and biochemistry. 3rd edition. Kluwer Academic/Plenum Publishers, New York; 2005. p. 183-245
  • Marnet LJ, Landino LM, Reddy GR. Peroxidases. In: Guengerich FP, editor, Biotransformation. 1st edition. Volume 3. Comprehensive toxicology. Elsevier, Oxford. Science; 1997. p. 149-63
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82(1):47-95
  • Marnett LJ. Oxyradicals and DNA damage. Carcinogesis 2000;21(3):361-70
  • Johansson T, Weidolf L, Jurva U. Mimicry of phase I drug metabolism - novel methods for metabolite characterization and synthesis. Rapid Commun Mass Spectrom 2007;21:2323-31
  • Lohmann W, Karst U. Generation and identification of reactive metabolites by electrochemistry and immobilized enzymes coupled on-line to liquid chromatography/mass spectrometry. Anal Chem 2007;79:6831-9
  • Madsen KG, Olsen J, Jurva U, Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism. Chem Res Toxicol 2007;20:821-31
  • Volk KJ, Yost RA, Brajter-Toth A. Electrochemistry on line with mass-spectrometry–insight into biological redox reactions. Anal Chem 1992;64:21-33
  • Diehl G, Karst U. On-line electrochemistry–MS and related techniques. Anal Bioanal Chem 2002;373:390-8
  • Van Berkel GJ. Focus issue on electrochemistry combined with mass spectrometry. J Am Soc Mass Spectrom 2004;15(12):1691-779
  • Lohmann W, Karst U. Biomimetic modelling of oxidative drug metabolism. Anal Bioanal Chem 2008;391:79-96
  • Pelkonen O, Turpeinen M, Raunio H, Prediction of drug metabolism and interaction on the basis of in vitro investigations. Basic Clin Pharmacol Toxicol 2005;96:16-175
  • Kremers P. Liver microsomes: a convenient tool for metabolism studies but ...;. In: Boobis AR, Kremers P, Pelkonen O, Pithan K, editors, European symposium on the prediction of drug metabolism in man: progress and problems. Office for Official Publications of the European Communities, Luxembourg; 1999. p. 38-52
  • Brandon EFA, Raap CD, Schellens JHA, An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 2003;189:233-46
  • Rodrigues AD. Integrated cytochrome P450 reaction phenotyping. Attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 1999;57:465-80
  • Guillouzo A, Langoue S, Corcos L, The isolated human cell as a tool to predict in vivo metabolism of drugs. In: Pacifici GM, Fracchia GN, editors, Advances in drug metabolism in man. Office for the Official Publications of the European Communities, Luxembourg; 1995. p. 756-82
  • Gomez-Lechon MJ, Donato MT, Castell JV, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 2003;4:292-312
  • Dash A, Inman W, Hoffmaster K, Tannenbaum SR. Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 2009;5:1159-74
  • Grossmann SJ. Overview: drug metabolism in the modern pharmaceutical industry. In: Zhang D, Zhu M, Humphreys WG, editors, Drug metabolism in drug design and development. Hoboken, Wiley & Sons, Inc., New Jersey; 2007. p. 3-13
  • Guidance for Industry Safety Testing of Drug Metabolites. FDA Public Health Advisory. Washington, DC: FDA/Center for Drug Evalution and Research 2008. Available from: www.fda.gov/downloads/Drugs/.../Guidances/ucm079266.pdf. [Last accessed 20 November 2009]
  • Staack RF, Hopfgartner G. New analytical strategies in studying drug metabolism. Anal Bioanal Chem 2007;388:1365-80
  • Dalvie D. Recent advances in the application of radioisotopes in drug metabolism, toxicology and pharmacokinetics. Curr Pharm Des 2000;6:1561-3
  • Marathe PH, Shyu WC, Humphreys WG. The use of radiolabeled compounds for ADME studies in discovery and exploratory development. Curr Pharm Des 2004;10:2991-3008
  • Ma S, Chowdhury SK, Alton KB. Application of mass spectrometry for metabolite identification. Curr Drug Metab 2006;7:503-23
  • Ma S, Chowdhury SK. Application of liquid chromatography/mass spectrometry for metabolite identification. In: Zhang D, Zhu M, Humphreys WG, editors, Drug metabolism in drug design and development. Hoboken, Wiley & Sons, Inc., New Jersey; 2007. p. 319-59
  • Betz M, Saxena K, Schwalbe H. Biomolecular NMR: a chaperone to drug discovery. Curr Opin Chem Biol 2006;10(3):219-25
  • Rousu T, Pelkonen O, Tolonen A. Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labelled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2009;23:843-55
  • Prakash C, Sharma R, Gleave M, In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery. Curr Drug Metab 2008;9:952-64
  • Afzelius L, Hasselgren C, Weidolf L, State-of-the-art tool for computational site of metabolism predictions: comparative analysis, mechanistical insights and future applications. Drug Metab Rev 2007;39:61-86
  • Czodrowski P, Kriegl JM, Scheuerer S, Computational approaches to predict drug metabolism. Expert Opin Drug Metab Toxicol 2009;5:15-27
  • Hutter MC. In silico prediction of drug properties. Curr Med Chem 2009;16:189-202
  • Testa B, Balamt A-L, Long A, Judson P. Predicting drug metabolism – an evaluation of the expert system METEOR. Chem Biodivers 2005;2:872-85
  • Erhardt PW. A human drug metabolism database: potential roles in the quantitative prediction of drug metabolism and metabolism-related drug-drug interactions. Curr Drug Metab 2003;4:411-22
  • Lewis DF. Humans P450s in the metabolism of drugs: molecular modelling of enzyme stubstrate interactions. Expert Opin Drug Metab Toxicol 2005;1:5-8
  • Lewis DF, Ito Y, Goldfrab PS. Investigating humans P450s involved in drug metabolism via homology with high-resolution P450 crystal structures of the CYP2C superfamily. Curr Drug Metab 2006;7:589-98
  • Özkan SA, Uslu B, Aboul-Enein HY, Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit Rev Anal Chem 2003;33:155-81
  • Hillard EA, de Abreu FC, Amatore C, Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chem Commun 2008;23:2612-28
  • Özkan SA. LC with electrochemical detection. Recent application to pharmaceuticals and biological fluids. Chromtographia 2007;66:3-13
  • Gamache PH, Meyer DF, Granger MC, Acworth IN. Metabolomic applications of electrochemistry/mass spectrometry. J Am Soc Mass Spectrom 2004;15:1717-26
  • Hayen H, Karst U. Strategies for the liquid chromatographic-mass spectrometric analysis of non-polar compounds. J Chromatogr A 2003;100:549-65
  • Shono T, Toda T, Oshino N. Preparation of N-dealkylated drug metabolites by electrochemical simulation of biotransformation. Drug Metab Dispos 1998;9:481-2
  • Hambitzer G, Heitbaum J. Electrochemical thermospray mass spectrometry. Anal Chem 1986;58:1067-70
  • Iwahashi H, Ishii T. Detection of the oxidative products of 3-hydroxykynurenine using high-performance liquid chromatography electrochemical detection ultraviolet absorption detection electron spin resonance spectrometry and high-performance liquid chromatography electrochemical detection ultraviolet absorption detection mass spectrometry. J Chromatogr A 1997;773:23-31
  • Regino M, Brajter-Toth A. An electrochemical cell for on-line electrochemistry/mass spectrometry. Anal Chem 1997;69:5067-972
  • Lohmann W, Karst U. Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem 2006;386:1701-8
  • Tahara K, Makii E, Iijima S, On-line liquid chromatography and circular dichroism detection of stereo-isomers of alpha-tocopherol derivatives generated by an electrochemical reaction. Anal Sci 2008;24:935-8
  • Jurva U, Wikström HV, Bruins AP. Electrochemically assisted Fenton reaction: reaction of hydroxyl radicals with xenobiotics followed by on-line analysis with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2002;16:1934-40
  • Johansson T, Jurva U, Masimirembwa C, Novel metabolites of amodiaquine formed by CYP1A1 and CYP1B1: structure elucidation using electrochemistry, mass spectrometry, and NMR. Drug Metab Dispos 2009;37:571-9
  • Regino M, Weston C, Brajter-Toth A. Effect of mobile phase composition on the electrochemical cell conversion efficiency in electrochemistry/mass spectrometry. Anal Chim Acta 1998;369:253-62
  • Modestov AD, Gun J, Lev O, Radial electrochemical flow cell for on-line coupling with mass spectrometry: theory and electrooxidation of dimethylaminomethyl ferrocene. Electroanalysis 2004;16(5):367-78
  • Modestov AD, Gun J, Savotine I, Lev O. On-line electrochemical–mass spectrometry study of the mechanism of oxidation of N,N-dimethyl-p-phenylenediamine in aqueous electrolytes. J Electroanal Chem 2004;565(1):7-19
  • Deng H, Van Berkel GJ. Electrochemical polymerization of aniline investigated using on line electrochemistry/electrospray mass spectrometry. Anal Chem 1999;71:4284
  • Deng H, Van Berkel HT. A thin-layer electrochemical flow cell coupled on-line with electrospray-mass spectrometry for the study of biological redox reactions. Electroanalysis 1999;11:857-65
  • Kertesz V, Van Berkel GJ. Monitoring ionic adducts to elucidate reaction mechanisms: reduction of tetracyanoquinodimethane and oxidation of triphenylamine investigated using on-line electrochemistry/electrospray mass spectrometry. J Solid State Electrochem 2005;9(5):390-7
  • Pretty JR, Deng HT, Goeringer DE, Van Berkel GJ. Electrochemically modulated preconcentration and matrix elimination for organic analytes coupled on-line with electrospray mass spectrometry. Anal Chem 2000;72(9):2066-74
  • Baumann A, Schubert B, Oberacher H, Karst U. Metabolic studies of tetrazepam based on electrochemical simulation in comparison to in vivo and in vitro methods. J Chromatogr A 2009;1216:3192-8
  • Baumann A, Lohmann W, Jahn S, Karst U. On-line electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) for the generation and identification of nucleotide oxidation products. Electroanalysis 2009;22(3):286-92
  • Kraft A. Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2007;2:355-85
  • Odijk M, Baumann A, van den Berg A, A microfluidic chip for electrochemical conversions in drug metabolism studies. Lab Chip 2009;9:1687-93
  • Liljegren G, Dahlin A, Nyholm L, On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry. Lab Chip 2005;5:1008-16
  • Van Berkel JG, Asano K. Controlling analyte electrochemistry in an electrospray ion source with a three-electrode emitter cell. Anal Chem 2004;76:1493-9
  • Berkel GJ, Kertesz V, Ford MJ. Efficient analyte oxidation in an electrospray ion source using a porous flow-through electrode emitter. J Am Soc Mass Spectrom 2004;15:1755-66
  • Kertesz V, Getek GJ. Study and application of a controlled-potential electrochemistry-electrospray emitter for electrospray mass spectrometry. Anal Chem 2005;77:4366-73
  • Van Berkel GJ, Kertesz V. Expanded electrochemical capabilities of the electrospray ion source using porous flow-through electrodes as the upstream ground and emitter high-voltage contact. Anal Chem 2005;77:8041-9
  • Xu X, Wenzhe L, Cole RB. On-line probe for fast electrochemistry/electrospray mass spectrometry. Investigation of polycyclic aromatic hydrocarbons. Anal Chem 1996;68(23):4244-53
  • Mautjana NA, Estes J, Eyler JR, Brajter-Toth A. Antioxidant pathways and one-electron oxidation of dopamine and cysteine in electrospray and on-line electrochemistry electrospray ionization mass spectrometry. Electroanalysis 2008;20:1959-67
  • Mautjana NA, Estes J, Eyler JR, Brajter-Toth A. One-electron oxidation and sensitivity of uric acid in on-line electrochemistry and in electrospray ionization mass spectrometry. Electroanalysis 2008;20:2501-8
  • Mautjana NA, Looi DW, Eyler JR, Brajter-Toth A. Sensitivity of positive ion mode electrospray ionization mass spectrometry (ESI MS) in the analysis of purine bases in ESI MS and on-line electrochemistry ESI MS (EC/ESI MS). Electrochim Acta 2009;55:52-8
  • Prudent M, Girault HH. Functional electrospray emitters. Analyst 2009;134:2189-203
  • Güngerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
  • Meunier B, Bernadou J. Active iron-oxo and iron-peroxo species in cytochromes P450 and peroxidases; oxo-hydroxo tautomerism with water-soluble metalloporphyrins. Struct Bonding 2000;97:1-35
  • Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochem Biophys Acta Gen Subj 2007;1770:390-401
  • Güngerich FP, Isin EM. Mechnisms of cytochrome P450 reactions. Acta Chim Slov 2008;55:7-19
  • Guengerich FP. Oxidative, reductive and hydrolytic metabolism of drugs. In: Zhang D, Zhu M, Humphreys WG, editors, Drug metabolism in drug design and development. Hoboken, Wiley & Sons, Inc., New Jersey; 2007. p.265
  • Jurva U, Wikström HV, Bruins AP, Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun Mass Spectrom 2003;17:800-10
  • Jurva U, Bissel P, Castagnoli NJ. Model electrochemical-mass spectrometric studies of the cytochrome P450-catalyzed oxidations of cyclic tertiary allylamines. J Am Chem Soc 2005;127:12368-77
  • Castagnoli N, Bissel P, Jurva U, Ashraf-Khorasani M. Electrochemical mass spectrometric studies on 1-cyclopropyl-4-phenyl-1,2, 3,6-tetrahydropyridine. Rapid Commun Mass Spectrom 2008;22:2089-96
  • Mladenka P, Simunek T, Hübl M, Hrdina R. The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic Res 2006;40:263-72
  • Lohmann W, Meermann B, Karst U, Quantification of electrochemically generated iodine-containing metabolites using inductively coupled plasma mass spectrometry. Anal Chem 2009;80:9769-75
  • Lohmann W, Karst U. Electrochemistry meets enzymes: instrumental on-line simulation of oxidative and conjugative metabolism reactions of toremifene. Anal Bioanal Chem 2009;394:1341-8
  • Van Leeuwen SM, Blankert B, Kauffmann J-M, Karst U. Prediction of clozapine metabolism by on-line electrochemistry/liquid chromatography/ mass spectrometry. Anal Bioanal Chem 2005;382:742-50
  • Blankert B, Hayen H, Kauffmann JM, . Electrochemical, chemical and enzymatic oxidations of phenothiazines. Electroanalysis 2005;17:1501-10
  • Lohmann W, Doetzer R, Karst U, . On-line electrochemistry/liquid chromatography/mass spectrometry for the simulation of pesticide metabolism. J Am Soc Mass Spectrom 2009;20:138-45
  • Madsen K, Skonberg C, Olsen J. Bioactivation of diclofenac in vitro and in vivo: correlation to electrochemical studies. Chem Res Toxicol 2008;21:1107-19
  • Gamache P, Smith R, Acworth I, ADME/Tox profiling–Using coulometric electrochemistry and electrospray ionization mass spectrometry. Spectroscopy 2003;18:14-24
  • Madsen K, Grönberg G, Olsen J, Electrochemical oxidation of troglitazone: identification and characterization of the major reactive metabolite in liver microsomes. Chem Res Toxicol 2008;21:2035
  • Tahara K, Nishikawa T, Abe Y, Production of a reactive metabolite of troglitazone by electrochemical oxidation performed in nonaqueous medium. J Pharm Biomed Anal 2009;500:1030-6
  • Lohmann W, Hayen H, Karst U. Covalent protein modification by reactive drug metabolites using online electrochemistry/liquid chromatography/ mass spectrometry. Anal Chem 2009;80:714-9
  • Roussel C, Dayon L, Girault HH. Generation of mass tags by the inherent electrochemistry of electrospray for protein mass spectrometry. J Am Soc Mass Spectrom 2004;15:1767-79
  • Van Berkel GJ, Kertesz V. Electrochemically initiated tagging of thiols using an electrospray ionization based liquid microjunction surface sampling probe two-electrode cell. Rapid Commun Mass Spectrom 2009;23:1380-6
  • Tahara K, Yano Y, Kanagawa K, Successful preparation of metabolite of troglitazone by in-flow electrochemical reaction on coulometric electrode. Chem Pharm Bull 2007;55:1207-12
  • Jurva U, Holmen A, Groenberg G, Weidolf L. Electrochemical generation of electrophilic drug metabolites: characterization of amodiaquine quinoneimine and cysteinyl conjugates by MS, IR, and NMR. Chem Res Toxicol 2008;21:928-35
  • Thevis M, Lohmann W, Schänzer W, Use of an electrochemically synthesised metabolite of a selective androgen receptor modulator for mass spectrometry-based sports drug testing. Eur J Mass Spectrom 2008;14:163-70
  • Gammelgaard B, Hansen HR, Stürup S, Moller C. The use of inductively coupled plasma mass spectrometry as a detector in drug metabolism studies. Expert Opin Drug Metab Toxicol 2008;4:1187-207
  • Marshall PS, Leavans B, Heudi O, Ramirez-Molina C. Liquid chromatography coupled with inductively coupled plasma mass spectrometry in the pharmaceutical industry: selected examples. J Chromatogr A 2004;1056:3-12
  • Paci A, Martens T, Royer J. Anodic oxidation of ifosfamide and cyclophosphamide: a biomimetic metabolism model of the oxazaphosphorinane. Anticancer Drugs Bioorg Med Chem Lett 2001;11:1347-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.