535
Views
98
CrossRef citations to date
0
Altmetric
Review

Clinical implications of CYP3A polymorphisms

&
Pages 171-182 | Published online: 24 Mar 2006

Bibliography

  • FINTA C, ZAPHIROPOULOS PG: The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene (2000) 260:13-23.
  • GELLNER K, EISELT R, HUSTERT E etal.: Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics (2001) 11:111-121.
  • LI AP, KAMINSKI DL, RASMUSSEN A: Substrates of human hepatic cytochrome P450 3A4. Toxicology (1995) 104:1-8.
  • GUENGERICH FP: Role of cytochrome P450 enzymes in drugdrug interactions. Adv. Pharmacol. (1997) 43:7-35.
  • WILKINSON GR: Cytochrome P4503A (CYP3A) metabolism: prediction of invivo activity in humans. J. Pharmacokinet. Biopharm. (1996) 24:475-490.
  • THUMMEL KE, WILKINSON GR: Invitro and invivo drug interactions involving human CYP3A. Ann. Rev. Pharmacol. Toxicol. (1998) 38:389-430.
  • GIBSON GG, PLANT NJ, SWALES KE, AYRTON A, EL-SANKARY W: Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica (2002) 32:165-206.
  • EVANS AM: Influence of dietary components on the gastrointestinal metabolism and transport of drugs. Ther. Drug Monit. (2000) 22:131-136.
  • GRANGE JM, WINSTANLEY PA, DAVIES PD: Clinically significant drug interactions with antituberculosis agents. Drug Saf. (1994) 11:242-251.
  • LUCEY MR, KOLARS JC, MERION RM, CAMPBELL DA, ALDRICH M, WATKINS PB: Cyclosporin toxicity at therapeutic blood levels and cytochrome P450 IIIA. Lancet (1990) 335:11-15.
  • CVETKOVIC R, GOA K: Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs (2003) 63:769-802.
  • BACKMAN JT, KIVISTO KT, OLKKOLAKT, NEUVONEN PJ: The area under the plasma concentrationtime curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur. J. Clin. Pharmacol. (1998) 54:53-58.
  • FLOYD MD, GERVASINI G, MASICAAL et al.: Genotypephenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics (2003) 13:595-606.
  • LIN YS, LOCKWOOD GF, GRAHAMMA et al.: In vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics (2001) 11:781-791.
  • WILLIAMS JA, COOK J, HURST SI: A significant drug-metabolizing role for CYP3A5? Drug Metab. Dispos. (2003) 31:1526-1530.
  • KUEHL P, ZHANG J, LIN Y et al.: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. (2001) 27:383-391.
  • SIM SC, EDWARDS RJ, BOOBIS AR, INGELMAN-SUNDBERG M: CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet. Genomics (2005) 15:625-631.
  • KAMDEM LK, MEINEKE I, KOCH I, ZANGER UM, BROCKMOLLER J, WOJNOWSKI L: Limited contribution of CYP3A5 to the hepatic 6-hydroxylation of testosterone. Naunyn Schmiedebergs Arch. Pharmacol. (2004) 370:71-77.
  • KAMDEM LK, STREIT F, ZANGER UM et al.: Contribution of CYP3A5 to the invitro hepatic clearance of tacrolimus. Clin. Chem. (2005) 51:1374-1381.
  • HUANG W, LIN YS, MCCONN DJ 2nd et al.: Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab. Dispos. (2004) 32:1434-1445.
  • KOCH I, WEIL R, WOLBOLD R et al.: Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab. Dispos. (2002) 30:1108-1114.
  • WOLBOLD R, KLEIN K, BURK O et al.: Sex is a major determinant of CYP3A4 expression in human liver. Hepatology (2003) 38:978-988.
  • WILLIAMS JA, RING BJ, CANTRELLVE et al.: Comparative metabolic capabilities of CYP3A4, CYP3A5 and CYP3A7. Drug Metab. Dispos. (2002) 30:883-891.
  • LAMBA JK, LIN YS, SCHUETZ EG, THUMMEL KE: Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. (2002) 54:1271-1294.
  • KESHAVA C, MCCANLIES EC, WESTON A: CYP3A4 polymorphisms potential risk factors for breast and prostate cancer: a HuGE review. Am. J. Epidemiol. (2004) 160:825-841.
  • THOMPSON EE, KUTTAB-BOULOS H, WITONSKY D, YANG L, ROE BA, DI RIENZO A: CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet. (2004) 75:1059-1069.
  • SCHIRMER M, TOLIAT MR, HABERLM et al.: Genetic signature consistent with selection against the CYP3A4*1B allele in non-African populations. Pharmacogenet. Genomics (2006) 16(1):59-71.
  • SATA F, SAPONE A, ELIZONDO G et al.: CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin. Pharmacol. Ther. (2000) 67:48-56.
  • EISELT R, DOMANSKI TL, ZIBAT A et al.: Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics (2001) 11:447-458.
  • DAI D, TANG J, ROSE R et al.: Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther. (2001) 299:825-831.
  • LAMBA JK, LIN YS, THUMMEL K et al.: Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics (2002) 12:121-132.
  • REBBECK TR, JAFFE JM, WALKER AH, WEIN AJ, MALKOWICZ SB: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. (1998) 90:1225-1229. [published erratum appears in J. Natl. Cancer Inst. (1999) 91(12):1082]
  • PARIS PL, KUPELIAN PA, HALL JM et al.: Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol. Biomarkers Prev. (1999) 8:901-905.
  • TAYEB MT, CLARK C, SHARP L et al.: CYP3A4 promoter variant is associated with prostate cancer risk in men with benign prostate hyperplasia. Oncol. Rep. (2002) 9:653-655.
  • TAYEB MT, CLARK C, HAITES NE, SHARP L, MURRAY GI, MCLEOD HL: CYP3A4 and VDR gene polymorphisms and the risk of prostate cancer in men with benign prostate hyperplasia. Br. J. Cancer (2003) 88:928-932.
  • LOUKOLA A, CHADHA M, PENN SG et al.: Comprehensive evaluation of the association between prostate cancer and genotypes/haplotypes in CYP17A1, CYP3A4, and SRD5A2. Eur. J. Hum. Genet. (2004) 12:321-332.
  • PLUMMER SJ, CONTI DV, PARIS PL, CURRAN AP, CASEY G, WITTE JS: CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. (2003) 12:928-932.
  • ZEIGLER-JOHNSON C, FRIEBEL T, WALKER AH et al.: CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res. (2004) 64:8461-8467.
  • WAXMAN DJ, LAPENSON DP, AOYAMA T, GELBOIN HV, GONZALEZ FJ, KORZEKWA K: Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch. Biochem. Biophys. (1991) 290:160-166.
  • WANDEL C, WITTE JS, HALL JM, STEIN CM, WOOD AJ, WILKINSONGR: CYP3A activity in African-American and European-American men: population differences and functional effect of the CYP3A4*1B5-promoter region polymorphism. Clin. Pharmacol. Ther. (2000) 68:82-91.
  • RODRIGUEZ-ANTONA C, SAYI JG, GUSTAFSSON LL, BERTILSSON L, INGELMAN-SUNDBERG M: Phenotypegenotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles. Biochem. Biophys. Res. Commun. (2005) 338(1):299-305.
  • ANDO Y, TATEISHI T, SEKIDO Y et al.: Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. (1999) 91:1587-1590.
  • AMIRIMANI B, WALKER AH, WEBERBL, REBBECK TR: RESPONSE: Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. (1999) 91:1588-1590.
  • AMIRIMANI B, NING B, DEITZ AC, WEBER BL, KADLUBAR FF, REBBECKTR: Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen. (2003) 42:299-305.
  • GARCIA-MARTIN E, MARTINEZ C, PIZARRO RM et al.: CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin. Pharmacol. Ther. (2002) 71:196-204.
  • WESTLIND A, LOFBERG L, TINDBERG N, ANDERSSON TB, INGELMAN-SUNDBERG M: Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5-upstream regulatory region. Biochem. Biophys. Res. Commun. (1999) 259:201-205.
  • BALL SE, SCATINA J, KAO J et al.: Population distribution and effects on drug metabolism of a genetic variant in the 5 promoter region of CYP3A4. Clin. Pharmacol. Ther. (1999) 66:288-294.
  • SPURDLE AB, GOODWIN B, HODGSON E et al.: The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics (2002) 12:355-366.
  • EAP CB, BUCLIN T, HUSTERT E et al.: Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur. J. Clin. Pharmacol. (2004) 60:231-236.
  • HE P, COURT MH, GREENBLATT DJ, VON MOLTKE LL: Genotypephenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance invivo. Clin. Pharmacol. Ther. (2005) 77:373-387.
  • NISHIMURA M, NAITO S, YOKOI T: Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab. Pharmacokinet. (2004) 19:135-149.
  • GANN PH, HENNEKENS CH, MA J, LONGCOPE C, STAMPFER MJ: Prospective study of sex hormone levels and risk of prostate cancer. J. Natl. Cancer Inst. (1996) 88:1118-1126.
  • VATTEN LJ, URSIN G, ROSS RK et al.: Androgens in serum and the risk of prostate cancer: a nested case-control study from the Janus serum bank in Norway. Cancer Epidemiol. Biomarkers Prev. (1997) 6:967-969.
  • WOJNOWSKI L, HUSTERT E, KLEIN K et al.: Re: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. (2002) 94:630-631.
  • ZHENHUA L, TSUCHIYA N, NARITA S et al.: CYP3A5 gene polymorphism and risk of prostate cancer in a Japanese population. Cancer Lett. (2005) 225:237-243.
  • ALMEIDA S, ZANDONA MR, FRANKEN N, CALLEGARI-JACQUES SM, OSORIO-WENDER MC, HUTZ MH: Estrogen-metabolizing gene polymorphisms and lipid levels in women with different hormonal status. Pharmacogenomics J. (2005) 5(6):346-351.
  • TIWARI AK, DESHPANDE SN, RAO AR et al.: Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr. Res. (2005) 75:21-26.
  • ATANASOVA SY, VON AHSEN N, TONCHEVA DI, DIMITROV TG, OELLERICH M, ARMSTRONG VW: Genetic polymorphisms of cytochrome P450 among patients with Balkan endemic nephropathy (BEN). Clin Biochem. (2005) 38:223-228.
  • DALLY H, EDLER L, JAGER B et al.: The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics (2003) 13:607-618.
  • LAI J, VESPRINI D, CHU W, JERNSTROM H, NAROD SA: CYP gene polymorphisms and early menarche. Mol. Genet. Metab. (2001) 74:449-457.
  • KADLUBAR FF, BERKOWITZ GS, DELONGCHAMP RR et al.: The CYP3A4*1B variant is related to the onset of puberty, a known risk factor for the development of breast cancer. Cancer Epidemiol. Biomarkers Prev. (2003) 12:327-331.
  • DEMICHELE A, APLENC R, BOTBYL J et al.: Drug-metabolizing enzyme polymorphisms predict clinical outcome in a node-positive breast cancer cohort. J. Clin. Oncol. (2005) 23:5552-5559.
  • LE MARCHAND L, DONLON T, KOLONEL LN, HENDERSON BE, WILKENS LR: Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol. Biomarkers Prev. (2005) 14:1998-2003.
  • FELIX CA, WALKER AH, LANGE BJ et al.: Association of CYP3A4 genotype with treatment-related leukemia. Proc. Natl. Acad. Sci. USA (1998) 95:13176-13181.
  • RUND D, KRICHEVSKY S, BAR-COHEN S et al.: Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia (2005) 19(11):1919-1928.
  • LOPES LF, PICCOLI FDE S, PAIXAO VA et al.: Association of CYP3A4 genotype with detection of V/J trans-rearrangements in the peripheral blood leukocytes of pediatric cancer patients undergoing chemotherapy for ALL. Leuk. Res. (2004) 28:1281-1286.
  • BLANCO JG, EDICK MJ, HANCOCKML et al.: Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics (2002) 12:605-611.
  • COLLADO M, BARRAGAN E, BOLUFER P et al.: Lack of association of CYP3A4-V polymorphism with the risk of treatment-related leukemia. Leuk. Res. (2005) 29:595-597.
  • KRONBACH T, FISCHER V, MEYERUA: Cyclosporine metabolism in human liver: identification of a cytochrome P450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin. Pharmacol. Ther. (1988) 43:630-635.
  • HESSELINK DA, VAN GELDER T, VANSCHAIK RH et al.: Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4 and CYP3A5 genes. Clin. Pharmacol. Ther. (2004) 76:545-556.
  • HESSELINK DA, VAN SCHAIK RH, VAN DER HEIDEN IP et al.: Genetic polymorphisms of the CYP3A4, CYP3A5 and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. (2003) 74:245-254.
  • MIN DI, ELLINGROD VL: Association of the CYP3A4*1B 5-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther. Drug Monit. (2003) 25:305-309.
  • VON AHSEN N, RICHTER M, GRUPPC, RINGE B, OELLERICH M, ARMSTRONG VW: No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem. (2001) 47:1048-1052.
  • ANGLICHEAU D, LE CORRE D, LECHATON S et al.: Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am. J. Transplant. (2005) 5:595-603.
  • SAPONE A, VAIRA D, TRESPIDI S et al.: The clinical role of cytochrome P450 genotypes in Helicobacter pylori management. Am. J. Gastroenterol. (2003) 98:1010-1015.
  • IOANNIDIS JP, NTZANI EE, TRIKALINOS TA, CONTOPOULOS-IOANNIDIS DG: Replication validity of genetic association studies. Nat. Genet. (2001) 29:306-309.
  • HUSTERT E, HABERL M, BURK O et al.: The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics (2001) 11:773-779.
  • LIN YS, DOWLING AL, QUIGLEY SD et al.: Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol. Pharmacol. (2002) 62:162-172.
  • YAMAORI S, YAMAZAKI H, IWANO S et al.: CYP3A5 contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab. Pharmacokinet. (2004) 19:120-129.
  • WRIGHTON SA, BRIAN WR, SARI MA et al.: Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol. Pharmacol. (1990) 38:207-213.
  • PAULUSSEN A, LAVRIJSEN K, BOHETS H et al.: Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics (2000) 10:415-424.
  • WOJNOWSKI L, TURNER PC, PEDERSEN B et al.: Increased levels of aflatoxin-albumin adducts are associated with CYP3A5 polymorphisms in The Gambia, West Africa. Pharmacogenetics (2004) 14:691-700.
  • ROY JN, LAJOIE J, ZIJENAH LS et al.: CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab. Dispos. (2005) 33:884-887.
  • LIN HJ, HAN CY, BERNSTEIN DA, HSIAO W, LIN BK, HARDY S: Ethnic distribution of the glutathione transferase Mu 1-1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis. (1994) 15:1077-1081.
  • BURK O, KOCH I, RAUCY J et al.: The induction of CYP3A5 in human liver and intestine is mediated by the xenobiotic sensors PXR and CAR. J. Biol. Chem. (2004) 279(37):38379-38385.
  • KRONBACH T, MATHYS D, UMENOM, GONZALEZ FJ, MEYERUA: Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol. Pharmacol. (1989) 36:89-96.
  • GORSKI JC, HALL SD, JONES DR, VANDENBRANDEN M, WRIGHTONSA: Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem. Pharmacol. (1994) 47:1643-1653.
  • WANDEL C, BOCKER R, BOHRER H, BROWNE A, RUGHEIMER E, MARTINE: Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br. J. Anaesth. (1994) 73:658-661.
  • YU KS, CHO JY, JANG IJ et al.: Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin. Pharmacol. Ther. (2004) 76:104-112.
  • SHIH PS, HUANG JD: Pharmacokinetics of midazolam and 1-hydroxymidazolam in chinese with different CYP3A5 genotypes. Drug Metab. Dispos. (2002) 30:1491-1496.
  • WONG M, BALLEINE RL, COLLINS M, LIDDLE C, CLARKE CL, GURNEY H: CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin. Pharmacol. Ther. (2004) 75:529-538.
  • GOH BC, LEE SC, WANG LZ et al.: Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J. Clin. Oncol. (2002) 20:3683-3690.
  • WILKINSON GR: Genetic variability in cytochrome P450 3A5 and invivo cytochrome P450 3A activity: some answers but still questions. Clin. Pharmacol. Ther. (2004) 76:99-103.
  • GIBBS MA, THUMMEL KE, SHEN DD, KUNZE KL: Inhibition of cytochrome P450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab. Dispos. (1999) 27:180-187.
  • VINCENT SH, KARANAM BV, PAINTER SK, CHIU SH: Invitro metabolism of FK-506 in rat, rabbit and human liver microsomes: identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism. Arch. Biochem. Biophys. (1992) 294:454-460.
  • SATTLER M, GUENGERICH FP, YUNCH, CHRISTIANS U, SEWINGKF: Cytochrome P450 3A enzymes are responsible for biotransformation of FK-506 and rapamycin in man and rat. Drug Metab. Dispos. (1992) 20:753-761.
  • WANG HP, XIE JJ, ZHANG ZY, YING Y, ZHU ZG, MAO P: [Study on polymorphisms of CYP3A5 gene and their clinical role]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. (2005) 22:423-426.
  • HAUFROID V, MOURAD M, VANKERCKHOVE V et al.: The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics (2004) 14:147-154.
  • YATES CR, ZHANG W, SONG P et al.: The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J. Clin. Pharmacol. (2003) 43:555-564.
  • ANGLICHEAU D, THERVET E, ETIENNE I et al.: CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin. Pharmacol. Ther. (2004) 75:422-433.
  • KREUTZ R, ZURCHER H, KAIN S, MARTUS P, OFFERMANN G, BEIGE J: The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics (2004) 14:665-671.
  • ZHAO Y, SONG M, GUAN D, BI S, MENG J, LI Q, WANG W: Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant. Proc. (2005) 37:178-181.
  • DAI Y, IWANAGA K, LIN YS et al.: Invitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol. (2004) 68:1889-1902.
  • THERVET E, ANGLICHEAU D, KINGB et al.: Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation (2003) 76:1233-1235.
  • ZHENG H, WEBBER S, ZEEVI A et al.: Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am. J. Transplant. (2003) 3:477-483.
  • ZHENG H, ZEEVI A, SCHUETZ E et al.: Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol. (2004) 44:135-140.
  • MACPHEE IA, FREDERICKS S, TAI T et al.: Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation (2002) 74:1486-1489.
  • GOTO M, MASUDA S, KIUCHI T et al.: CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics (2004) 14:471-478.
  • KARANAM BV, VINCENT SH, NEWTON DJ, WANG RW, CHIU SH: FK-506 metabolism in human liver microsomes: investigation of the involvement of cytochrome P450 isozymes other than CYP3A4. Drug Metab. Dispos. (1994) 22:811-814.
  • LAMPEN A, CHRISTIANS U, GUENGERICH FP et al.: Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab. Dispos. (1995) 23:1315-1324.
  • MACPHEE IA, FREDERICKS S, MOHAMED M et al.: Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation (2005) 79:499-502.
  • GIVENS RC, LIN YS, DOWLING AL et al.: CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol. (2003) 95:1297-1300.
  • KIVISTO KT, NIEMI M, SCHAEFFELER E et al.: CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study. Am. J. Pharmacogenomics (2005) 5:191-195.
  • HO H, PINTO A, HALL SD et al.: Association between the CYP3A5 genotype and blood pressure. Hypertension (2005) 45:294-298.
  • KREUTZ R, ZUURMAN M, KAIN S, BOLBRINKER J, DE JONG PE, NAVISG: The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet. Genomics (2005) 15(12):831-837.
  • FROMM MF, SCHMIDT BM, PAHL A, JACOBI J, SCHMIEDER RE: CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet. Genomics (2005) 15:737-741.
  • HAEHNER BD, GORSKI JC, VANDENBRANDEN M et al.: Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol. Pharmacol. (1996) 50:52-59.
  • KIVISTO KT, NIEMI M, SCHAEFFELER E et al.: Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics (2004) 14:523-525.
  • WILKE RA, MOORE JH, BURMESTERJK: Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet. Genomics (2005) 15:415-421.
  • MCCUNE JS, RISLER LJ, PHILLIPS BR, THUMMEL KE, BLOUGH D, SHENDD: Contribution of CYP3A5 to hepatic and renal ifosfamide N-dechloroethylation. Drug Metab. Dispos. (2005) 33:1074-1081.
  • KATZ DA, GRIMM DR, CASSAR SC et al.: CYP3A5 genotype has a dose-dependent effect on ABT-773 plasma levels. Clin. Pharmacol. Ther. (2004) 75:516-528.
  • DANDARA C, BALLO R, PARKER M: CYP3A5 genotypes and risk of oesophageal cancer in two South African populations. Cancer Lett. (2005) 225:275-282.
  • YEH KT, CHEN JC, CHEN CM, WANGYF, LEE TP, CHANG JG: CYP3A5*1 is an inhibitory factor for lung cancer in Taiwanese. Kaohsiung J. Med. Sci. (2003) 19:201-207.
  • LIU TC, LIN SF, CHEN TP, CHANG JG: Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol. Rep. (2002) 9:327-329.
  • FUKUDA T, ONISHI S, FUKUEN S et al.: CYP3A5 genotype did not impact on nifedipine disposition in healthy volunteers. Pharmacogenomics J. (2004) 4:34-39.
  • YAMAMOTO T, KUBOTA T, OZEKI T et al.: Effects of the CYP3A5 genetic polymorphism on the pharmacokinetics of diltiazem. Clin. Chim. Acta (2005) 362(1-2):147-154.
  • NIEMI M, BACKMAN JT, KAJOSAARILI et al.: Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. (2005) 77:468-478.
  • KOMORI M, NISHIO K, KITADA M et al.: Fetus-specific expression of a form of cytochrome P450 in human livers. Biochemistry (1990) 29:4430-4433.
  • BURK O, TEGUDE H, KOCH I et al.: Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J. Biol. Chem. (2002) 277:24280-24288.
  • KLEES TM, SHEFFELS P, DALE O, KHARASCH ED: Metabolism of alfentanil by cytochrome P4503a (cyp3a) enzymes. Drug Metab. Dispos. (2005) 33:303-311.
  • GILLAM EM, WUNSCH RM, UENG YF et al.: Expression of cytochrome P450 3A7 in Escherichia coli: effects of 5 modification and catalytic characterization of recombinant enzyme expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch. Biochem. Biophys. (1997) 346:81-90.
  • SMIT P, VAN SCHAIK RH, VAN DER WERF M et al.: A common polymorphism in the CYP3A7 gene is associated with a nearly 50% reduction in serum DHEAS levels. J. Clin. Endocrinol. Metab. (2005).
  • CAMERON DR, BRAUNSTEIN GD: The use of dehydroepiandrosterone therapy in clinical practice. Treat. Endocrinol. (2005) 4:95-114.
  • RODRIGUEZ-ANTONA C, JANDE M, RANE A, INGELMAN-SUNDBERG M: Identification and phenotype characterization of two CYP3A haplotypes causing different enzymatic capacity in fetal livers. Clin. Pharmacol. Ther. (2005) 77:259-270.
  • RODRIGUEZ-ANTONA C, AXELSONM, OTTER C, RANE A, INGELMAN-SUNDBERG M: A novel polymorphic cytochrome P450 formed by splicing of CYP3A7 and the pseudogene CYP3AP1. J. Biol. Chem. (2005) 280:28324-28331.
  • DOMANSKI TL, FINTA C, HALPERTJR, ZAPHIROPOULOS PG: cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol. Pharmacol. (2001) 59:386-392.
  • WESTLIND A, MALMEBO S, JOHANSSON I et al.: Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun. (2001) 281:1349-1355.
  • STONE A, RATNASINGHE LD, EMERSON GL et al.: CYP3A43 Pro(340)Ala polymorphism and prostate cancer risk in African Americans and Caucasians. Cancer Epidemiol. Biomarkers Prev. (2005) 14:1257-1261.
  • CAUFFIEZ C, LO-GUIDICE JM, CHEVALIER D et al.: First report of a genetic polymorphism of the cytochrome P450 3A43 (CYP3A43) gene: identification of a loss-of-function variant. Hum. Mutat. (2004) 23:101.
  • FUKUSHIMA-UESAKA H, SAITO Y, WATANABE H et al.: Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum. Mutat. (2004) 23:100.
  • MARTIN JE, DAOUD AJ, SCHROEDERTJ, FIRST MR: The clinical and economic potential of cyclosporin drug interactions. Pharmacoeconomics (1999) 15:317-337.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.