91
Views
14
CrossRef citations to date
0
Altmetric
Review

Assays for pharmacodynamic analysis of histone deacetylase inhibitors

, , &
Pages 213-230 | Published online: 24 Mar 2006

Bibliography

  • STRAHL BD, ALLIS CD: The language of covalent histone modifications. Nature (2000) 403(6765):41-45.
  • CHEUNG P, ALLIS CD, SASSONE-CORSI P: Signaling to chromatin through histone modifications. Cell (2000) 103(2):263-271.
  • MARMORSTEIN R: Protein modules that manipulate histone tails for chromatin regulation. Nat. Rev. Mol. Cell. Biol. (2001) 2(6):422-432.
  • GRUNSTEIN M: Histone acetylation in chromatin structure and transcription. Nature (1997) 389(6649):349-352.
  • MELNICK A, LICHT JD: Histone deacetylases as therapeutic targets in hematologic malignancies. Curr. Opin. Hematol. (2002) 9(4):322-332.
  • JONES PA, BAYLIN SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. (2002) 3(6):415-428.
  • FERRARA FF, FAZI F, BIANCHINI A etal.: Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. (2001) 61(1):2-7.
  • HE LZ, TOLENTINO T, GRAYSON P etal.: Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Invest. (2001) 108(9):1321-1330.
  • MOE-BEHRENS GH, PANDOLFI PP: Targeting aberrant transcriptional repression in acute myeloid leukemia. Rev. Clin. Exp. Hematol. (2003) 7(2):139-159.
  • LUND AH, VAN LOHUIZEN M: Epigenetics and cancer. Genes Dev. (2004) 18(19):2315-2335.
  • WARRELL RP, JR., HE LZ, RICHON V etal.: Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer Inst. (1998) 90(21):1621-1625.
  • ZELENT A, WAXMAN S, CARDUCCIM etal.: State of the translational science: summary of Baltimore workshop on gene re-expression as a therapeutic target in cancer January 2003. Clin. Cancer Res. (2004) 10(14):4622-4629.
  • LAIRD PW: Cancer epigenetics. Hum. Mol. Genet. (2005) 14(Spec No 1):R65-R76.
  • SHABBEER S, CARDUCCI MA: Focus on deacetylation for therapeutic benefit. Drugs (2005) 8(2):144-154.
  • JOHNSTONE RW: Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. (2002) 1(4):287-299.
  • UNGERSTEDT JS, SOWA Y, XU WS etal.: Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA (2005) 102(3):673-678.
  • ROSATO RR, GRANT S: Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin. Ther. Targets (2005) 9(4):809-824.
  • JOHNSTONE RW, LICHT JD: Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell (2003) 4(1):13-18.
  • BLAGOSKLONNY MV, ROBEY R, SACKETT DL etal.: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest and cytotoxicity. Mol. Cancer Ther. (2002) 1(11):937-941.
  • FU M, WANG C, ZHANG X etal.: Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem. Pharmacol. (2004) 68(6):1199-1208.
  • VIGUSHIN DM, COOMBES RC: Targeted histone deacetylase inhibition for cancer therapy. Curr. Cancer Drug Targets (2004) 4(2):205-218.
  • GREENE WC, CHEN LF: Regulation of NF-B action by reversible acetylation. Novartis Found. Symp. (2004) 259:208-217; discussion 218-225.
  • DRUMMOND DC, NOBLE CO, KIRPOTIN DB etal.: Clinical development of histone deacetylase inhibitors as anticancer agents. Ann. Rev. Pharmacol. Toxicol. (2005) 45:495-528.
  • HUO X, ZHANG J: Important roles of reversible acetylation in the function of hematopoietic transcription factors. J. Cell. Mol. Med. (2005) 9(1):103-112.
  • OH HJ, CHUNG EJ, LEE S etal.: Targeting histone deacetylase as a strategy for cancer prevention. In: Cancer Chemoprevention, Volume 1: Promising Cancer Chemoprevention Agents. GJ Kelloff etal. (Eds), Humana Press, Inc., Totowa, NJ, USA (2002):659-678.
  • MILLER TA, WITTER DJ, BELVEDERES: Histone deacetylase inhibitors. J. Med. Chem. (2003) 46(24):5097-5116.
  • MARKS PA, RICHON VM, MILLER T etal.: Histone deacetylase inhibitors. Adv. Cancer Res. (2004) 91:137-168.
  • FURUMAI R, KOMATSU Y, NISHINON etal.: Potent histone deacetylase inhibitors built from trichostatinA and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA (2001) 98(1):87-92.
  • YOSHIDA M, FURUMAI R, NISHIYAMA M etal.: Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol. (2001) 48(Suppl. 1):S20-S26.
  • KHOCHBIN S, VERDEL A, LEMERCIER C etal.: Functional significance of histone deacetylase diversity. Curr. Opin. Genet. Dev. (2001) 11(2):162-166.
  • GRAY SG, EKSTROM TJ: The human histone deacetylase family. Exp. Cell Res. (2001) 262(2):75-83.
  • GROZINGER CM, SCHREIBER SL: Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. (2002) 9(1):3-16.
  • PETRIE K, GUIDEZ F, HOWELL L etal.: The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem. (2003) 278(18):16059-16072.
  • GAO L, CUETO MA, ASSELBERGS F etal.: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. (2002) 277(28):25748-25755.
  • DE RUIJTER AJ, VAN GENNIP AH, CARON HN etal.: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. (2003) 370(Pt3):737-749.
  • CHANG JH, KIM HC, HWANG KY etal.: Structural basis for the NAD-dependent deacetylase mechanism of Sir2. J. Biol. Chem. Acta Haematol. (2002) 277(37):34489-34498.
  • MARMORSTEIN R: Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem. Soc. Trans. (2004) 32(Pt6):904-909.
  • BLANDER G,GUARENTE L: The Sir2 family of protein deacetylases. Ann. Rev. Biochem. (2004) 73:417-435.
  • COHEN HY, LAVU S, BITTERMAN KJ etal.: Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell (2004) 13(5):627-638.
  • VILLAR-GAREA A, ESTELLER M: Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int. J. Cancer (2004) 112(2):171-178.
  • LA THANGUE NB: Histone deacetylase inhibitors and cancer therapy. J. Chemother. (2004) 16(Suppl. 4):64-67.
  • LINDEMANN RK, GABRIELLI B, JOHNSTONE RW: Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle (2004) 3(6):779-788.
  • PIEKARZ R, BATES S: A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr. Pharm. Des. (2004) 10(19):2289-2298.
  • HESS-STUMPP H: Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur. J. Cell Biol. (2005) 84(2-3):109-121.
  • ROSATO RR, GRANT S: Histone deacetylase inhibitors in clinical development. Expert Opin. Investig. Drugs (2004) 13(1):21-38.
  • MARKS PA, JIANG X: Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle (2005) 4(4):549-551.
  • BHALLA KN: Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J. Clin. Oncol. (2005) 23(17):3971-3993.
  • DOKMANOVIC M, MARKS PA: Prospects: histone deacetylase inhibitors. J. Cell. Biochem. (2005) 96(2):293-304.
  • KORNBERG RD: Chromatin structure: a repeating unit of histones and DNA. Science (1974) 184(139):868-871.
  • ARENTS G, BURLINGAME RW, WANGBC etal.: The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA (1991) 88(22):10148-10152.
  • LUGER K, MADER AW, RICHMONDRK etal.: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature (1997) 389(6648):251-260.
  • ALBERTS B: Molecular biology of the cell, 4th ed. Garland Science, New York, US (2002):208.
  • IMHOF A, YANG XJ, OGRYZKO VV etal.: Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. (1997) 7(9):689-692.
  • YOSHIDA M, KIJIMA M, AKITA M etal.: Potent and specific inhibition of mammalian histone deacetylase both invivo and invitro by trichostatin A. J. Biol. Chem. (1990) 265(28):17174-17179.
  • RICHON VM, ZHOU X, SECRIST JP etal.: Histone deacetylase inhibitors: assays to assess effectiveness invitro and invivo. Methods Enzymol. (2004) 376:199-205.
  • KELLY WK, OCONNOR OA, KRUGLM etal.: Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. (2005) 23(17):3923-3931.
  • BYRD JC, MARCUCCI G, PARTHUNMR etal.: A Phase I and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood (2005) 105(3):959-967.
  • KELLY WK, RICHON VM, OCONNOR O etal.: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. (2003) 9(10 Pt 1):3578-3588.
  • SANDOR V, BAKKE S, ROBEY RW etal.: Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR-901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. (2002) 8(3):718-728.
  • RYAN QC, HEADLEE D, ACHARYA M etal.: Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. (2005) 23(17):3912-3922.
  • WYNNE AHERNE G, ROWLANDSMG, STIMSON L etal.: Assays for the identification and evaluation of histone acetyltransferase inhibitors. Methods (2002) 26(3):245-253.
  • STOCKWELL BR, HAGGARTY SJ, SCHREIBER SL: High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. (1999) 6(2):71-83.
  • WEGENER D, WIRSCHING F, RIESTER D etal.: A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem. Biol. (2003) 10(1):61-68.
  • WEGENER D, HILDMANN C, RIESTER D etal.: Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Anal. Biochem. (2003) 321(2):202-208.
  • HELTWEG B, DEQUIEDT F, VERDINE etal.: Nonisotopic substrate for assaying both human zinc and NAD+-dependent histone deacetylases. Anal. Biochem. (2003) 319(1):42-48.
  • HELTWEG B, DEQUIEDT F, MARSHALL BL etal.: Subtype selective substrates for histone deacetylases. J. Med. Chem. (2004) 47(21):5235-5243.
  • HELTWEG B, TRAPP J, JUNG M: Invitro assays for the determination of histone deacetylase activity. Methods (2005) 36(4):332-337.
  • KOUZARIDES T: Acetylation: a regulatory modification to rival phosphorylation? EMBO J. (2000) 19(6):1176-1179.
  • CHEN LF, GREENE WC: Regulation of distinct biological activities of the NF-B transcription factor complex by acetylation. J. Mol. Med. (2003) 81(9):549-557.
  • HE LZ, GUIDEZ F, TRIBIOLI C etal.: Distinct interactions of PML-RAR and PLZF-RAR with co-repressors determine differential responses to RA in APL. Nat. Genet. (1998) 18(2):126-135.
  • SIRULNIK A, MELNICK A, ZELENT A etal.: Molecular pathogenesis of acute promyelocytic leukaemia and APL variants. Best Pract. Res. Clin. Haematol. (2003) 16(3):387-408.
  • PEART MJ, SMYTH GK, VAN LAAR RK etal.: Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA (2005) 102(10):3697-3702.
  • MITSIADES CS, MITSIADES NS, MCMULLAN CJ etal.: Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA (2004) 101(2):540-545.
  • SAMBUCETTI LC, FISCHER DD, ZABLUDOFF S etal.: Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. (1999) 274(49):34940-34947.
  • RICHON VM, SANDHOFF TW, RIFKIND RA etal.: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA (2000) 97(18):10014-10019.
  • LEE BI, PARK SH, KIM JW etal.: MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor- type II receptor expression in human breast cancer cells. Cancer Res. (2001) 61(3):931-934.
  • PARK SH, LEE SR, KIM BC etal.: Transcriptional regulation of the transforming growth factor- type II receptor gene by histone acetyltransferase and deacetylase is mediated by NF-Y in human breast cancer cells. J. Biol. Chem. (2002) 277(7):5168-5174.
  • GUI CY, NGO L, XU WS etal.: Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA (2004) 101(5):1241-1246.
  • ISAACS JS, XU W, NECKERS L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell (2003) 3(3):213-217.
  • GOETZ MP, TOFT DO, AMES MM etal.: The Hsp90 chaperone complex as a novel target for cancer therapy. Ann. Oncol. (2003) 14(8):1169-1176.
  • SOLIT DB, SCHER HI, ROSEN N: Hsp90 as a therapeutic target in prostate cancer. Semin. Oncol. (2003) 30(5):709-716.
  • BAGATELL R, WHITESELL L: Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther. (2004) 3(8):1021-1030.
  • WORKMAN P: Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med. (2004) 10(2):47-51.
  • YU X, GUO ZS, MARCU MG etal.: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer. Inst. (2002) 94(7):504-513.
  • KOVACS JJ, MURPHY PJ, GAILLARD S etal.: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell (2005) 18(5):601-607.
  • BALI P, PRANPAT M, BRADNER J etal.: Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. (2005) 280(29):26729-26734.
  • MURPHY PJ, MORISHIMA Y, KOVACSJJ etal.: Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem. (2005) 280(40):33792-33799.
  • REN R: Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer (2005) 5(3):172-183.
  • AN WG, SCHULTE TW, NECKERS LM: The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. (2000) 11(7):355-360.
  • SHIOTSU Y, NECKERS LM, WORTMAN I etal.: Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood (2000) 96(6):2284-2291.
  • FUMO G, AKIN C, METCALFE DD etal.: 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood (2004) 103(3):1078-1084.
  • MIETTINEN M, LASOTA J: KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol. (2005) 13(3):205-220.
  • AKIN C: Clonality and molecular pathogenesis of mastocytosis. Acta Haematol. (2005) 114(1):61-69.
  • BONVINI P, GASTALDI T, FALINI B etal.: Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res. (2002) 62(5):1559-1566.
  • TURNER SD, ALEXANDER DR: What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis? Leukemia (2005) 19(7):1128-1134.
  • KIM WY, KAELIN WG: Role of VHL gene mutation in human cancer. J. Clin. Oncol. (2004) 22(24):4991-5004.
  • SATO S, FUJITA N, TSURUO T: Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA (2000) 97(20):10832-10837.
  • BELLACOSA A, KUMAR CC, CRISTOFANO AD etal.: Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv. Cancer Res. (2005) 94:29-86.
  • KIM D, DAN HC, PARK S etal.: AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci. (2005) 10:975-987.
  • MILLER P, SCHNUR RC, BARBACCI E etal.: Binding of benzoquinoid ansamycins to p100 correlates with their ability to deplete the erbB2 gene product p185. Biochem. Biophys. Res. Commun. (1994) 201(3):1313-1319.
  • MILLER P, DIORIO C, MOYER M etal.: Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res. (1994) 54(10):2724-2730.
  • LAVICTOIRE SJ, PAROLIN DA, KLIMOWICZ AC etal.: Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J. Biol. Chem. (2003) 278(7):5292-5299.
  • SHIMAMURA T, LOWELL AM, ENGELMAN JA etal.: Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res. (2005) 65(14):6401-6408.
  • GAZDAR AF, SHIGEMATSU H, HERZ J etal.: Mutations and addiction to EGFR: the Achilles heal of lung cancers? Trends Mol. Med. (2004) 10(10):481-486.
  • GROSS ME, SHAZER RL, AGUS DB: Targeting the HER-kinase axis in cancer. Semin. Oncol. (2004) 31(1 Suppl. 3):9-20.
  • NAOE T, KIYOI H: Normal and oncogenic FLT3. Cell. Mol. Life Sci. (2004) 61(23):2932-2938.
  • LEVIS M, SMALL D: Small molecule FLT3 tyrosine kinase inhibitors. Curr. Pharm. Des. (2004) 10(11):1183-1193.
  • MINAMI Y, KIYOI H, YAMAMOTO Y etal.: Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia (2002) 16(8):1535-1540.
  • HANAHAN D, WEINBERG RA: The hallmarks of cancer. Cell (2000) 100(1):57-70.
  • WARRENER R, BEAMISH H, BURGESSA etal.: Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J. (2003) 17(11):1550-1552.
  • QIU L, BURGESS A, FAIRLIE DP etal.: Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell (2000) 11(6):2069-2083.
  • CHIU KC, FINE M, IKLE D etal.: Telomerase activity and proliferation index in aggressive mature B-cell lymphoma: comparison to germinal center phenotypic markers. Hum. Pathol. (2003) 34(12):1259-1264.
  • NEWMARK HL, LUPTON JR, YOUNGCW: Butyrate as a differentiating agent: pharmacokinetics, analogues and current status. Cancer Lett. (1994) 78(1-3):1-5.
  • RICHON VM, EMILIANI S, VERDIN E etal.: A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA (1998) 95(6):3003-3007.
  • MARKS PA, RICHON VM, RIFKINDRA: Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst. (2000) 92(15):1210-1216.
  • PATNAIK A, ROWINSKY EK, VILLALONA MA etal.: A Phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin. Cancer Res. (2002) 8(7):2142-2148.
  • GORE SD, WENG LJ, FIGG WD etal.: Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res. (2002) 8(4):963-970.
  • ROSATO RR, ALMENARA JA, CARTEEL etal.: The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Mol. Cancer Ther. (2002) 1(4):253-266.
  • ROSATO RR, ALMENARA JA, YU C etal.: Evidence of a functional role for p21WAF1/CIP1 down-regulation in synergistic antileukemic interactions between the histone deacetylase inhibitor sodium butyrate and flavopiridol. Mol. Pharmacol. (2004) 65(3):571-581.
  • NGUYEN DM, SCHRUMP WD, TSAIWS etal.: Enhancement of depsipeptide-mediated apoptosis of lung or esophageal cancer cells by flavopiridol: activation of the mitochondria-dependent death-signaling pathway. J. Thorac. Cardiovasc. Surg. (2003) 125(5):1132-1142.
  • NGUYEN DM, SCHRUMP WD, CHENGA etal.: Abrogation of p21 expression by flavopiridol enhances depsipeptide-mediated apoptosis in malignant pleural mesothelioma cells. Clin. Cancer Res. (2004) 10(5):1813-1825.
  • KIM MS, KWON HJ, LEE YM etal.: Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med. (2001) 7(4):437-443.
  • DEROANNE CF, BONJEAN K, SERVOTTE S etal.: Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene (2002) 21(3):427-436.
  • KWON HJ, KIM MS, KIM MJ etal.: Histone deacetylase inhibitor FK-228 inhibits tumor angiogenesis. Int. J. Cancer (2002) 97(3):290-296.
  • ZGOURAS D, BECKER U, LOITSCH S etal.: Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem. Biophys. Res. Commun. (2004) 316(3):693-697.
  • QIAN DZ, WANG X, KACHHAP SK etal.: The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. (2004) 64(18):6626-6634.
  • LEACH MO, BRINDLE KM, EVELHOCH JL etal.: The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br. J. Cancer (2005) 92(9):1599-1610.
  • MORGAN B, THOMAS AL, DREVS J etal.: Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK-787/ZK-222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two Phase I studies. J. Clin. Oncol. (2003) 21(21):3955-3964.
  • LIU G, RUGO HS, WILDING G etal.: Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a Phase I study. J. Clin. Oncol. (2005) 23(24):5464-5473.
  • THOMAS JP, ARZOOMANIAN RZ, ALBERTI D etal.: Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. (2003) 21(2):223-231.
  • JONES PH, CHRISTODOULOS K, DOBBS N etal.: Combination antiangiogenesis therapy with marimastat, captopril and fragmin in patients with advanced cancer. Br. J. Cancer (2004) 91(1):30-36.
  • WENG DE, MASCI PA, RADKA SF etal.: A Phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol. Cancer Ther. (2005) 4(6):948-955.
  • DAVIS DW, MCCONKEY DJ, ABBRUZZESE JL etal.: Surrogate markers in antiangiogenesis clinical trials. Br. J. Cancer (2003) 89(1):8-14.
  • SHAKED Y, BERTOLINI F, MAN S etal.: Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell (2005) 7(1):101-111.
  • GHOSSEIN RA, BHATTACHARYA S: Molecular detection and characterization of circulating tumor cells and micrometastases in prostatic, urothelial, and renal cell carcinomas. Semin. Surg. Oncol. (2001) 20(4):304-311.
  • VLEMS FA, RUERS TJ, PUNT CJ etal.: Relevance of disseminated tumour cells in blood and bone marrow of patients with solid epithelial tumours in perspective. Eur. J. Surg. Oncol. (2003) 29(4):289-302.
  • ZIEGLSCHMID V, HOLLMANN C, BOCHER O: Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. (2005) 42(2):155-196.
  • CRISTOFANILLI M, BUDD GT, ELLISMJ etal.: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. (2004) 351(8):781-791.
  • FEHM T, SOLOMAYER EF, MENG S etal.: Methods for isolating circulating epithelial cells and criteria for their classification as carcinoma cells. Cytotherapy (2005) 7(2):171-185.
  • SMITH-JONES PM, SOLIT DB, AKHURST T etal.: Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. (2004) 22(6):701-706.
  • NECKERS L, IVY SP: Heat shock protein 90. Curr. Opin. Oncol. (2003) 15(6):419-424.
  • CHAVANY C, MIMNAUGH E, MILLERP etal.: p185erbB2 binds to GRP94 invivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J. Biol. Chem. (1996) 271(9):4974-4977.
  • RONZONI S, FARETTA M, BALLARINIM etal.: New method to detect histone acetylation levels by flow cytometry. Cytometry A (2005) 66(1):52-61.
  • CHUNG EJ, LEE S, SAUSVILLE EA etal.: Histone deacetylase inhibitor pharmacodynamic analysis by multiparameter flow cytometry. Ann. Clin. Lab. Sci. (2005) 35(4):397-406.
  • NIMMANAPALLI R, FUINO L, STOBAUGH C etal.: Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood (2003) 101(8):3236-3239.
  • YU C, RAHMANI M, ALMENARA J etal.: Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. (2003) 63(9):2118-2126.
  • RAHMANI M, YU C, DAI Y etal.: Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res (2003) 63(23):8420-8427.
  • GEORGE P, BALI P, ANNAVARAPU S etal.: Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood (2005) 105(4):1768-1776.
  • FU M, WANG C, REUTENS AT et al.: p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. (2000) 275(27):20853-20860.
  • SPILIANAKIS C, PAPAMATHEAKIS J, KRETSOVALI A: Acetylation by PCAF enhances CIITA nuclear accumulation and transactivation of major histocompatibility complex class II genes. Mol. Cell. Biol. (2000) 20(22):8489-8498.
  • MARTINEZ-BALBAS MA, BAUER UM, NIELSEN SJ, BREHM A, KOUZARIDEST: Regulation of E2F1 activity by acetylation. EMBO J. (2000) 19(4):662-671.
  • MARZIO G, WAGENER C, GUTIERREZ MI, CARTWRIGHT P, HELIN K, GIACCA M: E2F family members are differentially regulated by reversible acetylation. J. Biol. Chem. (2000) 275(15):10887-10892.
  • ZHANG W, BIEKER JJ: Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl. Acad. Sci. USA (1998) 95(17):9855-9860.
  • WANG C, FU M, ANGELETTI RH et al.: Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J. Biol. Chem. (2001) 276(21):18375-18383.
  • BOYES J, BYFIELD P, NAKATANI Y, OGRYZKO V: Regulation of activity of the transcription factor GATA-1 by acetylation. Nature (1998) 396(6711):594-598.
  • HUNG HL, LAU J, KIM AY, WEISS MJ, BLOBEL GA: CREB-binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol. Cell. Biol. (1999) 19(5):3496-3505.
  • HAYAKAWA F, TOWATARI M, OZAWAY, TOMITA A, PRIVALSKY ML, SAITO H: Functional regulation of GATA-2 by acetylation. J. Leukoc. Biol. (2004) 75(3):529-540.
  • YAMAGATA T, MITANI K, ODA H et al.: Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. EMBO J. (2000) 19(17):4676-4687.
  • KIERNAN RE, VANHULLE C, SCHILTZ L et al.: HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J. (1999) 18(21):6106-6118.
  • SOUTOGLOU E, KATRAKILI N, TALIANIDIS I: Acetylation regulates transcription factor activity at multiple levels. Mol. Cell. (2000) 5(4):745-751.
  • MASUMI A, OZATO K: Coactivator p300 acetylates the interferon regulatory factor-2 in U937 cells following phorbol ester treatment. J. Biol. Chem. (2001) 276(24):20973-20980.
  • VRIES RG, PRUDENZIATI M, ZWARTJES C, VERLAAN M, KALKHOVEN E, ZANTEMA A: A specific lysine in c-Jun is required for transcriptional repression by E1A and is acetylated by p300. EMBO J. (2001) 20(21):6095-6103.
  • JOHNSON LR, JOHNSON TK, DESLER M et al.: Effects of B-Myb on gene transcription: phosphorylation-dependent activity ans acetylation by p300. J. Biol. Chem. (2002) 277(6):4088-4097.
  • TOMITA A, TOWATARI M, TSUZUKI S et al.: c-Myb acetylation at the carboxyl-terminal conserved domain by transcriptional co-activator p300. Oncogene (2000) 19(3):444-451.
  • SARTORELLI V, PURI PL, HAMAMORIY et al.: Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell. (1999) 4(5):725-734.
  • HUNG HL, KIM AY, HONG W, RAKOWSKI C, BLOBEL GA: Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J. Biol. Chem. (2001) 276(14):10715-10721.
  • FURIA B, DENG L, WU K et al.: Enhancement of nuclear factor-B acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. (2002) 277(7):4973-4980.
  • GU W, ROEDER RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell (1997) 90(4):595-606.
  • SAKAGUCHI K, HERRERA JE, SAITO S et al.: DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. (1998) 12(18):2831-2841.
  • LIU L, SCOLNICK DM, TRIEVEL RC et al.: p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. (1999) 19(2):1202-1209.
  • CHEN LF, FISCHLE W, VERDIN E, GREENE WC: Duration of nuclear NF-B action regulated by reversible acetylation. Science (2001) 293(5535):1653-1657.
  • BRAUN H, KOOP R, ERTMER A, NACHT S, SUSKE G: Transcription factor Sp3 is regulated by acetylation. Nucleic Acids Res. (2001) 29(24):4994-5000.
  • MCDONALD C, REICH NC: Cooperation of the transcriptional coactivators CBP and p300 with Stat6. J. Interferon Cytokine Res. (1999) 19(7):711-722.
  • SHANKARANARAYANAN P, CHAITIDIS P, KUHN H, NIGAM S: Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J. Biol. Chem. (2001) 276(46):42753-42760.
  • MUTH V, NADAUD S, GRUMMT I, VOIT R: Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J. (2001) 20(6):1353-1362.
  • HUANG S, QIU Y, SHI Y, XU Z, BRANDT SJ: P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL. EMBO J. (2000) 19(24):6792-6803.
  • PELLETIER G, STEFANOVSKY VY, FAUBLADIER M et al.: Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription. Mol. Cell. (2000) 6(5):1059-1066.
  • YAO YL, YANG WM, SETO E: Regulation of transcription factor YY1 by acetylation and deacetylation. Mol. Cell. Biol. (2001) 21(17):5979-5991.
  • STERNER R, VIDALI G, ALLFREY VG: Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. J. Biol. Chem. (1979) 254(22):11577-11583.
  • PASHEVA E, SAROV M, BIDJEKOV K et al.: In vitro acetylation of HMGB-1 and -2 proteins by CBP: the role of the acidic tail. Biochemistry (2004) 43(10):2935-2940.
  • BERGEL M, HERRERA JE, THATCHERBJ et al.: Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes. J. Biol. Chem. (2000) 275(15):11514-11520.
  • HERRERA JE, SAKAGUCHI K, BERGELM, TRIESCHMANN L, NAKATANI Y, BUSTIN M: Specific acetylation of chromosomal protein HMG-17 by PCAF alters its interaction with nucleosomes. Mol. Cell. Biol. (1999) 19(5):3466-3473.
  • MUNSHI N, MERIKA M, YIE J, SENGER K, CHEN G, THANOS D: Acetylation of HMG I(Y) by CBP turns off IFN- expression by disrupting the enhanceosome. Mol. Cell. (1998) 2(4):457-467.
  • CHEN H, LIN RJ, XIE W, WILPITZ D, EVANS RM: Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell (1999) 98(5):675-686.
  • WOLF D, RODOVA M, MISKA EA, CALVET JP, KOUZARIDES T: Acetylation of -catenin by CREB-binding protein (CBP). J. Biol. Chem. (2002) 277(28):25562-25567.
  • LU Q, HUTCHINS AE, DOYLE CM, LUNDBLAD JR, KWOK RP: Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J. Biol. Chem. (2003) 278(18):15727-15734.
  • STERNER DE, BERGER SL: Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. (2000) 64(2):435-459.
  • KUMAR BR, SWAMINATHAN V, BANERJEE S, KUNDU TK: p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J. Biol. Chem. (2001) 276(20):16804-16809.
  • HERRERA JE, BERGEL M, YANG XJ, NAKATANI Y, BUSTIN M: The histone acetyltransferase activity of human GCN5 and PCAF is stabilized by coenzymes. J. Biol. Chem. (1997) 272(43):27253-27258.
  • IMHOF A, YANG XJ, OGRYZKO VV, NAKATANI Y, WOLFFE AP, GE H: Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. (1997) 7(9):689-692.
  • HASAN S, STUCKI M, HASSA PO et al.: Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol. Cell. (2001) 7(6):1221-1231.
  • YU X, GUO ZS, MARCU MG et al.: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst. (2002) 94(7):504-513.
  • BANNISTER AJ, MISKA EA, GORLICHD, KOUZARIDES T: Acetylation of importin- nuclear import factors by CBP/p300. Curr. Biol. (2000) 10(8):467-470.
  • COHEN HY, LAVU S, BITTERMAN KJ et al.: Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell. (2004) 13(5):627-638.
  • NARYZHNY SN, LEE H: The post-translational modifications of proliferating cell nuclear antigen: acetylation, not phosphorylation, plays an important role in the regulation of its function. J. Biol. Chem. (2004) 279(19):20194-20199.
  • CHAN HM, KRSTIC-DEMONACOS M, SMITH L, DEMONACOS C, LA THANGUE NB: Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Cell. Biol. (2001) 3(7):667-674.
  • SATO S, FUJITA N, TSURUO T: Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA (2000) 97(20):10832-10837.
  • AN WG, SCHULTE TW, NECKERS LM: The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. (2000) 11(7):355-360.
  • SHIOTSU Y, NECKERS LM, WORTMAN I et al.: Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood (2000) 96(6):2284-2291.
  • ARLANDER SJ, EAPEN AK, VROMANBT, MCDONALD RJ, TOFTDO, KARNITZ LM: Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J. Biol. Chem. (2003) 278(52):52572-52577.
  • LAVICTOIRE SJ, PAROLIN DA, KLIMOWICZ AC, KELLY JF, LORIMERIA: Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J. Biol. Chem. (2003) 278(7):5292-5299.
  • SHIMAMURA T, LOWELL AM, ENGELMAN JA, SHAPIRO GI: Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res. (2005) 65(14):6401-6408.
  • MILLER P, SCHNUR RC, BARBACCI E, MOYER MP, MOYER JD: Binding of benzoquinoid ansamycins to p100 correlates with their ability to deplete the erbB2 gene product p185. Biochem. Biophys. Res. Commun. (1994) 201(3):1313-1319.
  • MILLER P, DIORIO C, MOYER M et al.: Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res. (1994) 54(10):2724-2730.
  • MINAMI Y, KIYOI H, YAMAMOTO Y et al.: Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia (2002) 16(8):1535-1540.
  • MINET E, MOTTET D, MICHEL G et al.: Hypoxia-induced activation of HIF-1: role of HIF-1-Hsp90 interaction. FEBS Lett. (1999) 460(2):251-256.
  • AOYAGI Y, FUJITA N, TSURUO T: Stabilization of integrin-linked kinase by binding to Hsp90. Biochem. Biophys. Res. Commun. (2005) 331(4):1061-1068.
  • FUMO G, AKIN C, METCALFE DD, NECKERS L: 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood (2004) 103(3):1078-1084.
  • WEBB CP, HOSE CD, KOOCHEKPOUR S et al.: The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res. (2000) 60(2):342-349.
  • BLAGOSKLONNY MV, TORETSKY J, BOHEN S, NECKERS L: Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Sci. USA (1996) 93(16):8379-8383.
  • XU Y, LINDQUIST S: Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl. Acad. Sci. USA (1993) 90(15):7074-7078.
  • SCHULTE TW, BLAGOSKONNY MV, ROMANOVA L et al.: Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell. Biol. (1996) 16(10):5839-5845.
  • STANCATO LF, SILVERSTEIN AM, OWENS-GRILLO JK, CHOW YH, JOVER, PRATT WB: The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J. Biol. Chem. (1997) 272(7):4013-4020.
  • PRATT WB, TOFT DO: Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. (1997) 18(3):306-360.
  • ZIEMIECKI A, CATELLI MG, JOAB I, MONCHARMONT B: Association of the heat shock protein hsp90 with steroid hormone receptors and tyrosine kinase oncogene products. Biochem. Biophys. Res. Commun. (1986) 138(3):1298-1307.
  • SOLIT DB, ZHENG FF, DROBNJAK M et al.: 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. (2002) 8(5):986-993.
  • FORTUGNO P, BELTRAMI E, PLESCIAJ et al.: Regulation of survivin function by Hsp90. Proc. Natl. Acad. Sci. USA (2003) 100(24):13791-13796.
  • HOLT SE, AISNER DL, BAUR J et al.: Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. (1999) 13(7):817-826.
  • ALIGUE R, AKHAVAN-NIAK H, RUSSELL P: A role for Hsp90 in cell cycle control: WEE1 tyrosine kinase activity requires interaction with Hsp90. EMBO J. (1994) 13(24):6099-6106.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.