69
Views
6
CrossRef citations to date
0
Altmetric
Technology Evaluation

4SCan/vADME: intelligent library screening as a shortcut from hits to lead compounds

, , &
Pages 471-484 | Published online: 30 May 2006

Bibliography

  • SHOICHET B: Virtual screening of chemical libraries. Nature (2004) 432:862-865.
  • HOU T, XU X: Recent development and application of virtual screening in drug discovery: an overview. Curr. Pharm. Des. (2004) 10:1011-1033.
  • SEIFERT MHJ, WOLF K, VITT D: Virtual high-throughput in silico screening. Drug Discovery Today: Biosilico (2003) 1:143-149.
  • LANGER T, HOFFMANN RD: Virtual screening: an effective tool for lead structure discovery? Curr. Pharm. Des. (2001) 7:509-527.
  • LANGER T, KROVAT EM: Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr. Opin. Drug Discov. Devel. (2003) 6:370-376.
  • JENKINS JL, GLICK M, DAVIES JW: A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes. J. Med. Chem. (2004) 47:6144-6159.
  • SCHUFFENHAUER A, FLOERSHEIM P, ACKLIN P, JACOBY, E: Similarity metrics for ligands reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci. (2003) 43:391-405.
  • CHEESERIGHT T, MACKEY M, VINTER A: Peptides to non-peptides: leads from structureless virtual screening. Drug Discovery Today: Biosilico (2004) 2:57-60.
  • FECHNER U, FRANKE L, RENNER S, SCHNEIDER P, SCHNEIDER G: Comparison of correlation vector methods for ligand-based similarity searching. J. Comput. Aided Mol. Des. (2004) 17:687-698.
  • LEMMEN C, LENGAUER T: Computational methods for the structural alignment of molecules. J. Comput. Aided Mol. Des. (2000) 14:215-232.
  • SEIFERT MH: ProPose: Steered virtual screening by simultaneous proteinligand docking and ligandligand alignment. J. Chem. Inf. Model. (2005) 45:449-460.
  • SCHULZ-GASCH T, STAHL M: Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J. Mol. Model. (2003) 9:47-57.
  • CORNELL WD, CIEPLAK P, BAYLY CI etal.: A second generation force field for the simulartion of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. (1995) 117:5179-5197.
  • JONES G, WILLETT P, GLEN RC, LEACH AR, TAYLOR R: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. (1997) 267:727-748.
  • MUEGGE I, MARTIN YC: A general and fast scoring function for proteinligand interactions: a simplified potential approach. J. Med. Chem. (1999) 42:791-804.
  • GOHLKE H, HENDLICH M, KLEBE G: Knowledge-based scoring function to predict proteinligand interactions. J. Mol. Biol. (2000) 295:337-356.
  • BOEHM HJ: Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from denovo design or 3D database search programs. J. Comput. Aided Mol. Des. (1998) 12:309-323.
  • GOHLKE H, HENDLICH M, KLEBE G: Predicting binding modes, binding affinities and hot spots for proteinligand complexes using a knowledge-based scoring function. Perspect. Drug Discovery Des. (2000) 20:115-144.
  • BISSANTZ C, FOLKERS G, ROGNAND: Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. (2000) 43:4759-4767.
  • STAHL M, RAREY M: Detailed analysis of scoring functions for virtual screening. J. Med. Chem. (2001) 44:1035-1042.
  • LIPINSKI CA, LOMBARDO F, DOMINEY BW, FEENEY PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (1997) 23:3-25.
  • LARSEN T, LINK A: A timely reassessment of early prediction in the bioavailability of orally administered drugs. Angew. Chem. Int. Ed. Engl. (2005) 44:4432-4434.
  • FAIRBANKS LD, BOFILL M, RUCKEMANN K, SIMMONDS HA: Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. J. Biol. Chem. (1995) 270:29682-29689.
  • WOLF K: High-throughput docking, a case study. Conference talk: International workshop new approaches in drug design and discovery. Schlob Rauischholzhausen, Germany (2003).
  • LIU S, NEIDHARDT EA, GROSSMANTH, OCAIN T, CLARDY J: Structure of human dihydroorotate dehydrogenase in complex with antiproliferative agents. Struct. Fold. Des. (2000) 8:25-33.
  • BERMAN HM, WESTBROOK J, FENGZ etal.: The protein data bank. Nucleic Acids Res. (2000) 28:235-242.
  • DEJULIAN-ORTIZ JV, GALVEZ J, MUNOZ-COLLADO C, GARCIA-DOMENECH R, GIMENO-CARDONA C: Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J. Med. Chem. (1999) 42:3308-3314.
  • LEBAN J, SAEB W, GARCIA G, BAUMGARTNER R, KRAMER B: Discovery of a novel series of DHODH inhibitors by a docking procedure and QSAR refinement. Bioorg. Med. Chem. Lett. (2004) 14:55-58.
  • YOON S, SMELLIE A, HARTSOUGH D, FILIKOV A: Surrogate docking: structure-based virtual screening at high throughput speed. J. Comput.-Aided Mol. Des. (2005) 19:483-497.
  • RAREY M, LENGAUER T: A recursive algorithm for efficient combinatorial library docking. Perspect. Drug Discovery Des. (2000) 20:63-81.
  • SUN Y, EWING TJA, SKILLMAN AG, KUNTZ ID: CombiDOCK: structure-based combinatorial docking and library design. J. Comput. Aided Mol. Des. (1998) 12:597-604.
  • SPROUS DG, LOWIS DR, LEONARSJM etal.: OptiDock: virtual HTS of combinatorial libraries by efficient sampling of binding modes in product space. J. Comb. Chem. (2004) 6:530-539.
  • SEIFERT MHJ, SCHMITT F, HERZ T, KRAMER B: ProPose: a docking engine based on a fully configurable proteinligand interaction model. J. Mol. Model. (2004) 10:342-357.
  • YALKOWSKY SH: Estimation of the aqueous solubility of complex organic compounds. Chemosphere (1993) 26:1239-1261.
  • RAN Y, YALKOWSKY SH: Prediction of drug solubility by general solubility equation (GSE). J. Chem. Inf. Comput. Sci. (2001) 41:354-357.
  • HUUSKONEN J, SALO M, TASKINENJ: Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J. Chem. Inf. Comput. Sci. (1998) 38:450-456.
  • MCFARLAND JW, AVDEEF A, BERGER CM, RAEVSKY OA: Estimating the water solubilities of crystalline compounds from their chemical structure alone. J. Chem. Inf. Comput. Sci. (2001) 41:1355-1359.
  • ENGKVIST O, WREDE P: High-throughput in silico prediction of aqueous solubility based on one-and two-dimensional descriptors. J. Chem. Inf. Comput. Sci. (2002) 42:1247-1249.
  • YAN AX, GASTEIGER J: Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J. Chem. Inf. Comput. Sci. (2003) 43:429-434.
  • MOE: The molecular operating environment from Chemical Computing Group, Inc., 1010 Sherbrooke Street W, Suite 910, Montreal, Quebec, H3A 2R7 Canada.
  • DELANEY JS: ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. (2004) 44:1000-1005.
  • GAO H, SHANMUGASUNDARAM V, LEE P: Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res. (2002) 19:497-503.
  • TETKO IV, TANCHUK VY, KASHEVATN, VILLA AEP: Estimation of aqueous solubility of chemical compounds using E-state indices. J. Chem. Inf. Comput. Sci. (2001) 41:1488-1493.
  • HUUSKONEN J: Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J. Chem. Inf. Comput. Sci. (2000) 40:773-777.
  • OPREA TI, GOTTFRIES J: Toward minimalistic modeling of oral drug absorption. J. Mol. Graph. Model. (1999) 17:261-274.
  • CHENG A, MERZ KM: Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. J. Med. Chem. (2003) 46:3572-3580.
  • YALKOWSKY SH: Solubility and solubilization in aqueous media. American Chemical Society and Oxford University Press, Washington DC, New York, Oxford (1999).
  • HOU TJ, XIA K, ZHANG W XU XJ: ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. (2004) 44:266-275.
  • VOTANO JR, PARHAM M, HALL LH, KIER LB, HALL, LM: Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation. Chem. Biodiversity (2004) 1:1829-1841.
  • MATLABTM: Release 14, The MathWorks, Inc., Natick, MA, USA.
  • WESSEL MD, JURS PC, TOLAN JW, MUSKAL SM: Prediction of human intestinal absorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci. (1998) 38:726-735.
  • PALM K, STENBERG P, LUTHMAN K, ARTUSSON P: Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. (1997) 14:568-571.
  • LENNERNS H, NYLANDER S, UNGELL AL: Jejunal permeability: a comparison between the ussing chamber technique and the single-pass perfusion in humans. Pharm. Res. (1997) 14:667-671.
  • WOHNSLAND F, FALLER B: High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J. Med. Chem. (2001) 44:923-930.
  • GASTEIGR J, RUDOLPH C, SADOWSKI J: Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methods (1990) 3:537-547.
  • BRUESTLE M, BECK B, SCHINDLER T, KING W, MITCHELL T CLARK T: Descriptors, physical properties and drug-likeness. J. Med. Chem. (2002) 45:3345-3356.
  • CLARK T, ALEX A, BECK B etal.: Vamp 8.1. Computer-Chemie-Centrum, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Naegelsbachstrasse 25, D-91052 Erlangen, Germany (2002).
  • KOHONEN T: Self-organization and associative memory, 3rd edn. Springer-Verlag, Berlin, Germany (1989).
  • KOHONEN T: Self-organized formation of topologically correct feature maps. Biological Cybernetics (1982) 43:59-69.
  • ZUPAN J, GASTEIGER J: Neural networks for chemists, an introduction. VCH Verlagsgesellschaft mbH, Weinheim, Germany (1993).
  • BALAKIN KV, EKINS S, BUGRIM A etal.: Kohonen maps for prediction of binding to human cytochrome P450 3A4. Drug Metab. Dispos. (2004) 32:1183-1189.
  • KOHONEN T, HYNNINEN J, KANGASJ, LAAKSONEN J: SOMPAK: The self-organizing map program package. Technical Report A31. Helsinki University of Technology, Laboratory of Computer and Information Science, FIN-02150, Espoo, Finland (1996).
  • Octave v. 2.1.35 GPL.
  • YANO JK, WESTER MR, SCHOCH GA, GRIFFIN KJ, STOUT CD, JOHNSONEF: The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J. Biol. Chem. (2004) 279:38091-38094.
  • WILLIAMS PA, COSME J, VINKOVICDM etal.: Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science (2004) 305:683-686.
  • WILLIAMS PA, COSME J, WARD A, ANGOVE HC, VINKOVIC DM, JHOTIH: Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature (2003) 424:464-468.
  • WESTER MR, YANO JK, SCHOCH GA etal.: The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0 A resolution. J. Biol.Chem. (2004) 279:35630-35637.
  • ROWLAND P, BLANEY FE, SMYTH MG etal.: Crystal structure of human cytochrome P450 2D6. J. Biol. Chem. (2006) 281(11):7614-7622.
  • TREDGER JM, STOLL S: Cytochromes P450 their impact on drug treatment. Hospital Pharmacist (2002) 9:167-173.
  • KOVACS JA: How iron activates O2. Science (2003) 299:1024-1025.
  • SINGH SB, SHEN LQ, WALKER MJ, SHERIDAN RP: A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. J. Med. Chem. (2003) 46:1330-1336.
  • DE GROOT MJ, ALEX AA, JONES BC: Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J. Med. Chem. (2002) 45:1983-1993.
  • ZAMORA I, AFZELIUS L, CRUCIANIG: Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J. Med. Chem. (2003) 46:2313-2324.
  • Quattro/DS, Version 2.0, quattro research GmbH (2005).
  • MCMARTIN C, BOHACEK RS: QXP: powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des. (1997) 11:333-344.

Patents

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.