351
Views
30
CrossRef citations to date
0
Altmetric
Review

High-throughput invitro profiling assays: lessons learnt from experiences at Novartis

, , , , , , , & show all
Pages 823-833 | Published online: 24 Nov 2006

Bibliography

  • WANG J, URBAN L: The impact of early ADME profiling on drug discovery and development strategy. Drug Discov. World (2004) 5:73-86.
  • CURATOLO W: Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Technol. Today (1998) 1(9):387-393.
  • FALLER B: Improving solubility in lead optimization. Am. Pharm. Rev. (2004) 7(4):30-32.
  • AVDEEF A: Physicochemical profiling. Curr. Topics Med. Chem. (2001) 1:277-351.
  • BERGSTROM CAS, LUTHMAN K, ARTURSSON P: Accuracy of calculated pH-dependent aqueous drug solubility. Eur. J. Pharm. Sci. (2004) 22:387-398.
  • GLOMME A, MARZ J, DRESSMAN JB: Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. (2005) 94:1-16.
  • KERNS EH: High-throughput physicochemical profiling for drug discovery. J. Pharm. Sci. (2001) 90:1838-1858.
  • AVDEEF A: Absorption and drug development – solubility, permeability and charge state. Wiley-Interscience, Hoboken, New Jersey, USA (2003).
  • LIPINSKY CA, LOMBARDO F, DOMINY BW et al.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (1997) 23:3-25.
  • KIBBEY CE, POOLE SK, ROBINSON B et al.: An integrated process for measuring the physicochemical properties of drug candidates in a preclinical discovery environment. J. Pharm. Sci. (2001) 90:1164-1175.
  • BEVAN CD, LLOYD RS: A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. (2000) 72:1781-1787.
  • KARIV I, ROURICK RA, KASSEL DB et al.: Improvement of ‘hit-to-lead’ optimization by integration of in vitro HTS experimental models for early determination of pharmacokinetic properties. Comb. Chem. High Throughput Screen. (2002) 5:459-472.
  • STRESSER DM, BROUDY MI, HO T et al.: Highly selective inhibition of human CYP3A in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab. Dispos. (2004) 32:105-112.
  • PAN L, HO Q, TSUTSUI K, TAKAHASHI L: Comparison of chromatographic and spectroscopic methods used to rank compounds for aqueous solubility. J. Pharm. Sci. (2001) 90:521-529.
  • STOUCH TR, KENYON JR, JOHNSON SR et al.: In silico ADME/Tox: why models fail. J. Computer-Aided Mol. Des. (2003) 17:83-92.
  • EGAN W, MERT KM, BALDWIM JJ: Prediction of drug absorption using multivariate statistics. J. Med. Chem. (2000) 43:3867-3877.
  • ZHAO YH, LE J, ABRAHAM MH et al.: Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. (2002) 91(2):605.
  • VALKO K, BEVAN C, REYNOLDS D: Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to Log P/Log D. Anal. Chem. (1997) 69(11):2022-2029.
  • ONG S, LIU H, PIDGEON C: Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A (1996) 728(1-2):113-128.
  • KANSY M, SENNER F, GUBERNATOR K: Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. (1998) 41:1007-1010.
  • AVDEEF A, TSINMAN O: PAMPA – a drug absorption in vitro model. Eur. J. Pharm. Sci. (2006) 28(1-2):43-50.
  • LOWTHER N, TOMLINSON B, FOX R et al.: Caco-2 cell permeability and physicochemical properties of a new oral iron chelator. J. Pharm. Sci. (1998) 87:1041-1045.
  • WOHNSLAND F, FALLER B: High-throughput permeability pH profile and high-throughput alkane/water Log P with artificial membranes. J. Med. Chem. (2001) 44(6):923-930.
  • ARTURSSON P, KARLSSON J: Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human epithelial (Caco-2) cells. BioChem. Biophys. Res. Comm. (1991) 175(3):880-885.
  • YEE S: In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestine) absorption in man – fact or myth. Pharm. Res. (1997) 14(6):763-766.
  • HO NFH, ADSON A, BORCHARDT RT et al.: Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers. In: Transport Processes in Pharmaceutical Systems. Marcel Dekker, New York (USA), Basel (Switzerland) (2002):219-318.
  • TAVELIN S, TAIPALENSUU J, SODERBERG L, MORRISON R, CHONG S, ARTURSSON P: Prediction of the oral absorption of low-permeability drugs using small intestine like 2/4/A1 cell monolayers. Pharm. Res. (2003) 20(3):397-405.
  • SAITOH R, SUGANO K, TAKATA N et al.: Correction of permeability with pore radius of tight junctions in Caco-2 monolayers improves the prediction of the dose fraction of hydrophilic drugs absorbed by humans. Pharm. Res. (2004) 21(5):749-755.
  • SUGANO K, NORIYUKI T, MACHIDA M et al.: Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int. J. Pharm. (2002) 241:241-251.
  • SAWADA GA, BARSUHN CL, LUTZKE BS et al.: Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants. J. Pharm. Exp. Ther. (1999) 288:1317-1326.
  • AVDEEF A, ARTURSSON P, NEUHOFF S et al.: Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pKa flux method. Eur. J. Pharm. Sci. (2005) 24(4):333-349.
  • MANDAGERE AK, THOMPSON TN, HWANG KK: Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. J. Med. Chem. (2002) 45:304-311.
  • NARITOMI Y, TERASHITA S, KIMURA S, SUZUKI A, KAGAYAMA A, SUGIYAMA Y: Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab. Dispos. (2001) 29:1316-1324.
  • TANG W, WANG RW, LU AY: Utility of recombinant cytochrome P450 enzymes: a drug metabolism perspective. Curr. Drug Metab. (2005) 6:503-517.
  • RADOMINSKA-PANDYA A, BRATTON S, LITTLE JM: A historical overview of the heterologous expression of mammalian UDP-glucuronosyltransferase isoforms over the past twenty years. Curr. Drug Metab. (2005) 6:141-160.
  • LENGYEL G, VERES Z, SZABO P, VERECZKEY L, JEMNITZ K: Canilicular and sinusoidal disposition of bilirubin mono- and diglucuronides in sandwich-cultured human and rat primary hepatocytes. Drug Metab. Dispos. (2005) 33:1355-1360.
  • ANNAERT PP, BROUWER KL: Assessment of drug interactions in heptobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes. Drug Metab. Dispos. (2005) 33:388-394.
  • REDDY A, HEIMBACH T, FREIWALD S et al.: Validation of a semi-automated human hepatocyte assay for the determination and prediction of intrinsic clearance in discovery. J. Pharm. Biomed. Anal. (2005) 37:319.
  • MCGINNITY DF, SOARS MG, URBANOWICZ RA, RILEY RJ: Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab. Dispos. (2004) 32:1247-1253.
  • LIN JH, WONG BK: Complexities of glucuronidation affecting in vitro in vivo extrapolation. Curr. Drug Metab. (2002) 3:623-646.
  • MCDONNELL PJ, JACOBS MR: Hospital admissions resulting from preventable adverse drug reactions. Ann. Pharmacother. (2002) 36(9):1331-1336.
  • CURTIS LH, OSTBYE T, SENDERSKY V et al.: Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am. J. Med. (2003) 114(2):135-141.
  • DOUCET J, CHASSAGNE P, TRIVALLE C et al.: Drug–drug interactions related to hospital admissions in older adults: a prospective study of 1000 patients. J. Am. Geriatr. Soc. (1996) 44(8):944-948.
  • SMITH DA, SCHMID EF: Drug withdrawals and the lessons within. Curr. Opin. Drug Discov. Dev. (2006) 9:38-46.
  • OBACH RS, WALSKY RL, VENKATAKRISHNAN K et al.: The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J. Pharmacol. Exp. Ther. (2006) 316(1):336-348.
  • BJORNSSON TD, CALLAGHAN JT, EINOLF HJ et al.: The conduct of in vitro and in vivo drug–drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. (2003) 31(7):815-832.
  • TUCKER GT, HOUSTON JB, HUANG SM: Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential – toward a consensus. Pharm Res. (2001) 18(8):1071-1080.
  • BROWN HS, ITO K, GALETIN A et al.: Prediction of in vivo drug–drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br. J. Clin. Pharmacol. (2005) 60(5):508-518.
  • OBACH RS, WALSKY RL, VENKATAKRISHNAN K et al.: In vitro cytochrome P450 inhibition data and the prediction of drug–drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin. Pharmacol. Ther. (2005) 78(6):582-592.
  • ROSTAMI-HODJEGAN A, TUCKER GT: ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug–drug interactions. Drug Disc. Today Technologies (2004) 1(4):441-444.
  • CRESPI CL: Assessing the potential for drug–drug interactions in an accelerated throughput mode. PSTT (1999) 2:119-112.
  • REDFERN WS, WAKEFIELD ID, PRIOR H et al.: Safety pharmacology – a progressive approach. Fund. Clin. Pharm. (2002) 16:161-173.
  • WHITEBREAD S, HAMON J, BOJANIC D et al.: In vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today (2005) 10:1421-1433.
  • HAMON J, AZZAOUI K, WHITEBREAD S et al.: In vitro safety pharmacology profiling. Eur. J. Pharm. (2006) 1:60-63.
  • REDFERN L, CARLSSON AS, DAVIS WG et al.: Relationship between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. (2003) 58:32-45.
  • VALENTIN P, HOFFMANN F, DE CLERCK TG et al.: Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J. Pharmacol. Toxicol. Methods (2004) 49:171-181.
  • HOFFMANN P, WARNER B: Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J. Pharmacol. Toxicol. Methods (2006) 53(2):87-105.
  • WEMPE MF: Quaternary ammonium ions can externally block voltage-gated K+ channels. Establishing a theoretical and experimental model that predicts KDS and the selectivity of K+ over Na+ ions. J. Mol. Struct. (2001) 562:63-78.
  • MURPHY SM, PALMER M, POOLE MF et al.: Evaluation of functional and binding assays in cells expressing either recombinant or endogenous hERG channel. J. Pharmacol. Toxicol. Methods (2006) 54(1):42-55.
  • LEE WM: Drug-induced hepatotoxicity. New Engl. J. Med. (2003) 349:474-485.
  • GROENEBERG DA, GROSSE-SIESTRUP C, FISCHER A: In vitro models to study hepatotoxicity. Toxicol. Pathol. (2002) 30:394-399.
  • DAMBACH DM, ANDREWS BA, MOULIN F: New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol. Pathol. (2005) 33(1):17-26.
  • BLOOM J: Principles of hematotoxicology: laboratory assessment and interpretation of data. Toxicol. Pathol. (1993) 21:130-134.
  • RICH IN : In vitro hematotoxicity testing in drug development: a review of past, present and future applications. Curr. Opin. Drug Discov. Dev. (2003) 6(1):100-109.
  • RICH IN, HALL KM: Validation and development of a predictive paradigm for hemotoxicology using a multifunctional bioluminescence colony-forming proliferation assay. Toxicol. Sci. (2005) 87(2):427-441.
  • AMES BN, LEE F, DURSTON W: An improved bacterial system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. USA (1973) 70:782-786.
  • FRIEAUFF W, POTTER-LOCHER F, CORDIER A et al.: Automatic analysis of the in vitro micronucleus test on V79 cells. Mutat. Res. (1998) 413:57-68.
  • FENECH M: Biomarkers of genetic damage for cancer epidemiology. Toxicology (2002) 181-182:411-416.
  • FLAMAND N, MEUNIER J, MEUNIER P et al.: Mutagenicity test: a miniaturized version of the Ames test used in a prescreening assay for point mutagenesis assessment. Toxicol. In Vitro (2001) 15:105-114.
  • KREJSA CM, HORVATH D, ROGALSKI SL et al.: Predicting ADME properties and side effects: the BioPrint approach. Curr. Opin. Drug Discov. Dev. (2003) 6(4):470-480.
  • FLIRI AF, LOGING WT, THADEIO PF et al.: Biological spectra analysis: linking biological activity profiles to molecular structure. Proc. Natl. Acad. Sci. USA (2005) 102:261-266.

Websites

  • http://www.fda.gov/cder/guidance/clin3.pdfGuidance for industry. Drug metabolism/drug interaction studies in the drug development process: studies in vitro. Department of Health and Human Services, US Food and Drug Administraion, Center for Drug Evaluation and Research, Center For Biologics Evaluation and Research, April (1997).
  • http://www.fda.gov/cder/guidance/2635fnl.pdfGuidance for industry. In vivo drug metabolism/drug interaction studies – study design, data analysis, and recommendations for dosing and labeling. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, November (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.