1,001
Views
79
CrossRef citations to date
0
Altmetric
Review

Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics

, &
Pages 895-921 | Published online: 24 Nov 2006

Bibliography

  • STROLIN BENEDETTI M: Oxidative drug metabolism not cytochrome P450 dependent. Actual. Chim. Thér. (1989) 16:337-356.
  • BEEDHAM C: The role of non-P450 enzymes in drug oxidation. Pharm. World Sci. (1997) 19(6):255-263.
  • RETTIE AE, FISHER MB: Transformation enzymes: oxidative; non-P450. In: Handbook of drug metabolism. Woolf TF (Ed.), Marcel Dekker, New York, USA (1999):131-151.
  • LANG D, KALGUTKAR AS: Non-P450 mediated oxidative metabolism of xenobiotics. In: Drug metabolizing enzymes: cytochrome P450 and other enzymes in drug discovery and development. Lee JS, Obach RS, Fisher MB (Eds), FontisMeida–Marcel Dekker, USA (2003):483-539.
  • DOLLERY CT: Valproic acid. In: Therapeutic Drugs, 2nd edn, Vol. 2. Churchill Livingstone, Edinburgh, UK (1999):V1-V6.
  • STROLIN BENEDETTI M: Biotransformation of xenobiotics by amine oxidases. Fundam. Clin. Pharmacol. (2001) 15:75-84.
  • WROCZYNSKI P, WIERZCHOWSKI J: Aromatic aldehydes as fluorogenic indicators for human aldehyde dehydrogenases and oxidases: substrate and isozyme specificity. Analyst (2000) 125:511-516.
  • CASHMAN JR: Some distinctions between flavin-containing and cytochrome P450 monooxygenases. Biochem. Biophys. Res. Comm. (2005) 338:599-604.
  • ESWARAMOORTHY S, BONANNO JB, BURLEY SK, SWAMINATHAN S: Mechanism of action of a flavin-containing monooxygenase. Proc. Natl. Acad. Sci. USA (2006) 103(26):9832-9837.
  • MUSHIRODA T, DOUYAN R, TAKAHARA E, NAGATA O: The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metab. Dispos. (2000) 28:1231-1237.
  • HINES RN, HOPP KA, FRANCO J, SAEIAN K, BEGUN FP: Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase. Mol. Pharmacol. (2002) 62:320-325.
  • CASHMAN JR: Flavin monooxygenases. In: Enzyme systems that metabolise drugs and other xenobiotics. Ioannides C (Ed), John Wiley & Sons, Chichester, UK (2002):67-93.
  • ZHANG J, CASHMAN JR: Quantitative analysis of FMO gene mRNA levels in human tissues. Drug Metab. Dispos. (2006) 34:19-26.
  • CASHMAN JR, ZHANG J: Human flaving-containing monooxygenases. Ann. Rev. Pharmacol. Toxicol. (2006) 46:65-100.
  • CASHMAN JR: Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr. Drug Metab. (2000) 1:1037-1045.
  • CASHMAN JR: Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem. Res. Toxicol. (1995) 8:166-181.
  • KOUKOURITAKI SB, SIMPSON P, YEUNG CK, RETTIE AE, HINES EN: Human hepatic flavin-containing monooxygenase 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr. Res. (2002) 50:1-7.
  • CASHMAN JR, AKERMAN BR, FORREST SM, TREACY EP: Population-specific polymorphisms of the human FMO3 gene: significance for detoxication. Drug Metab. Dispos. (2000) 28:169-173.
  • STROLIN BENEDETTI M, WHOMSLEY R, BALTES EL: Differences in absorption, distribution, metabolism and excretion of xenobiotics between the pediatric and the adult population: implications for drug development. Expert Opin. Drug Metab. Toxicol. (2005) 1(3):447-471.
  • HINES RN: Developmental and tissue-specific expression of human flavin-containing monooxygenases 1 and 3. Expert Opin. Drug Metab. Toxicol. (2006) 2:41-49.
  • WHETSTINE JR, YUEH MF, MCCARVER DG et al.: Ethnic differences in human flavin-containing monooxygenase 2 (FMO2) polymorphisms: detection of expressed protein in African-Americans. Toxicol. Appl. Pharmacol. (2000) 168:216-224.
  • KRUEGER SK, MARTIN SR, YUEH MF, PEREIRA CB, WILLIAMS DE: Identification of active flavin-containing monooxygenase isoform 2 in human lung and characterization of expressed protein. Drug Metab. Dispos. (2002) 30:34-41.
  • KRUEGER SK, WILLIAMS DE, YUEH MF et al.: Genetic polymorphisms of flavin-containing monooxygenase (FMO). Drug Metab. Rev. (2002) 34(3):523-532.
  • DOLPHIN CT, BECKETT DJ, JANMOHAMED A et al.: The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, non-functional protein. J. Biol. Chem. (1998) 273(46):30599-30607.
  • HENDERSON MC, KRUEGER SK, STEVENS JF, WILLIAMS DE: Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione. Chem. Res. Toxicol. (2004) 17:633-640.
  • HENDERSON MC, KRUEGER SK, SIDDENS LK, STEVENS JF, WILLIAMS DE: S-oxygenation of the thioether organophosphate insecticides phorate and disulfoton by human lung flavin-containing monooxygenase 2. Biochem. Pharmacol. (2004) 68:959-967.
  • AL-WAIZ M, AYESH R, MITCHELL SC, ILDLE JR, SMITH RL: A genetic polyphormism of then-oxydation of trimethylamine in humans. Clin. Pharmacol. Ther. (1987) 42:588-594.
  • AYESH R, MITCHELL SC, ZHANG A, SMITH RL: The fish odour syndrome: biochemical, familial, and clinical aspects. BMJ (1993) 307:655-657.
  • RODRIGUEZ RJ, MIRANDA CL: Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. Drug Metab. Dispos. (2000) 28:1083-1086.
  • CASHMAN JR, ZIEGLER DM: Contribution of N-oxygenation to the metabolism of MPTP 1-methyl-4(phenyl-1,2,3,6,-tetrahydropyridine by the flavin-containing monooxygenase by various liver preparations. Mol. Pharmacol. (1986) 29:163-167.
  • DOSTERT P, STROLIN BENEDETTI M: Les bases de la neurotoxicité du MPTP. L’Encéphale (1988) 14:399-412.
  • CHIBA K, KOBAYASHI K, ITOH K et al.: N-oxygenation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by the rat liver flavin-containing monooxygenase expressed in yeast cells. Eur. J. Clin. Pharmacol. (1995) 293:97-100.
  • WU RF, ICHIKAWA Y: Inhibition of 1-methyl-4-phenyl-1,2,3,6-tetrahydro- pyridine metabolic activity of porcine FAD-containing monooxygenase by selective monoamine oxidase-B inhibitors. FEBS Lett. (1995) 358:145-148.
  • KRUEGER SK, WILLIAMS DE: Mammalian flaving-containing monooxygenases: structure/fucntion, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther. (2005) 106:357-387.
  • HUKKANEN J, DEMSEY D, JACOB P III, BENOWITZ N: Effect of pregnancy on a measure of FMO3 activity. Br. J. Clin. Pharmacol. (2005) 60:224-226.
  • ZARAGOZA A, ANDRÉS D, SARRIÓN D, CASCALES M: Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment in rats. Inducibility of FAD monooxygenase system and age effect. Chemico-Biol. Interact. (2000) 124:87-101.
  • GARATTINI E, MENDEL R, ROMAO MJ, WRIGHT R, TERAO M: Mammalian molydbo-flavoenzymes, as expanding family of proteins: structure, genetics, regulation and pathophysiology. Biochem. J. (2003) 372:15-32.
  • PACHER P, NIVOROZHKIN A, SZABO C: Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. (2006) 58:87-114.
  • KITAMURA S, SUGIHARA K, OHTA S: Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab. Pharmacokinet. (2006) 21:83-98.
  • XIA M, DEMPSKI R, HILLE R: The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen. J. Biol. Chem. (1999) 274:3323-3330.
  • BEEDHAM C: Molybdenum hydrolases. In: Enzyme systems that metabolise drugs and other xenobiotics. Ioannides C (Ed), John Wiley & Sons, Chichester, UK (2002):147-187.
  • WRIGHT RM, WEIGEL LK, VARELLA GARCIA M, VAITAITIS GM, REPINE JE: Molecular cloning, refined chromosomal mapping and structural analysis of the human gene encoding aldehyde oxidase (AOX1), a candidate for the ALS2 gene. Redox Rep. (1997) 3:135-144.
  • BEEDHAM C, PEET CF, CARTER H, PANOUTSOPOULOS GI, SMITH JA: Role of aldehyde oxidase in biogenic amine metabolism. In: Progress in brain research. Tipton K, Boulton AA (Eds), Elsevier, Amsterdam, The Netherlands (1995):345-353.
  • YOSHIHARA S, OHTA S: Involvement of hepatic aldehyde oxidase in conversion of 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) to 1-methyl-4-phenyl-5,6- dihydro-2-pyridone. Arch. Biochem. Biophys. (1998) 360:93-98.
  • YOSHIHARA S, HARADA K, OHTA S: Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydro- pyridine (MPTP) in perfused rat liver: involvement of hepatic aldehyde oxidase as a detoxification enzyme. Drug Metab. Dispos. (2000) 28:538-543.
  • PANOUTSOPOULOS GI, BEECHAM C: Kinetics and specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase towards substituted benzaldehydes. Acta Biochim. Pol. (2004) 51:649-663.
  • PANOUTSOPOULOS GI, KOURETAS D, BEEDHAM C: Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes. Chem. Res. Toxicol. (2004) 17:1368-1376.
  • PANOUTSOPOULOS GI, BEECHAM C: Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices. Pharmacology (2005) 73:199-208.
  • PANOUTSOPOULOS GI, KOURETAS D, GOUNARIS EG, BEEDHAM C: Enzymatic oxidation of 2-phenylethylamine (2-PEA) to phenylacetic acid and 2-phenylethanol with special reference to the metabolism of its intermediate phenylacetaldehyde. Basic Clin. Pharmacol. Toxicol. (2004) 95:273-279.
  • PANOUTSOPOULOS GI: Metabolism of homovanillamine to homovanillic acid in guinea pig liver slices. Cell. Physiol. Biochem. (2005) 15:225-232.
  • PANOUTSOPOULOS GI: Contribution of aldehyde oxidizing enzymes on the metabolism of 3,4-dimethoxy-2-phenylethylamine to 3,4-dimethoxyphenylacetic acid via the intermediate 3,4-dimethoxyphenylacetaldehyde guinea pig liver slices. Cell. Physiol. Biochem. (2005) 17:47-56.
  • PIETRUSZKO R, KUYS G, AMBROZIAK A: Physiological role of aldhehyde dehydrogenase (EC 1.2.1.3). Alcoholism (1991) 206:101-106.
  • RUENITZ PC, BAI X: Acidic metabolites of tamoxifen. Aspects of formation and fate in the female rat. Drug Metab. Dispos. (1995) 23:993-998.
  • ROCHAT B, KOSEL M, BOSS G, TESTA B, GILLET M, BAUMANN P: Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochem. Pharmacol. (1998) 56:15-23.
  • RASHIDI MR, JA SMITH, SE CLARKE, BEEDHAM C: In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Drug Metab. Dispos. (1997) 25:805-813.
  • LAKE BG, BALL SE, KAO J, RENWICK AB, PRICE RJ, SCATINA JA: Metabolism of zaleplon by human liver: evidence for involvement of aldehyde oxidase. Xenobiotica (2002) 32:835-847.
  • KAWASHIMA K, HOSI K, NARUKE T, SHIBA T, KITAMURA M, WATABE T: Aldehyde oxidase dependent marked species difference in hepatic metabolism of the sedative hypnotic zaleplon, between monkeys and rats. Drug Metab. Dispos. (1999) 27:422-428.
  • RENWICK AB, BALL SE, TREDGER JM et al.: Inhibition of zaleplon metabolism by cimetidine in the human liver: in vitro studies with subcellular fractions and precision-cut liver slices. Xenobiotica (2002) 32:849-862.
  • SUGIHARA K, KITAMURA S, TATSUMI K: involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Drug Metab. Dispos. (1996) 24:199-292.
  • KAMEL A, PRAKASH C, OBACH S: Determination of the enzymes involved in the reductive cleavage of ziprasidone to dihydroziprasidone and the formation of S-methyl dihydroziprasidone using human in vitro systems and electrospray ionisation tandem mass spectrometry (ESI/MS/MS). Proceedings of the 50th ASMS Conference. Orlando, USA (2002).
  • OBACH RS, HUYNH P, ALLEN MC, BEEDHAM C: Human liver aldehyde oxidase; inhibition by 239 drugs. J. Clin. Pharmacol. (2004) 44:7-19.
  • RASHIDI MR, SMITH JA, CLARKE SE, BEEDHAM C: Inhibition of human and guinea pig liver aldehyde oxidases in vitro. J. Pharm. Pharmacol. (1995) 47:1090.
  • LARKE SE, HARRELL AW, CHENERY RJ: Role of aldehyde oxidase in the in vitro conversion of famciclovir to penciclovir in human liver. Drug Metab. Dispos. (1995) 23:251-264.
  • RASTELLI G, COSTANTINO L, ALBASINI A: A model of the interaction of substrates and inhibitors with xanthine oxidase. J. Am. Chem. Soc. (1997) 119:3007-3016.
  • VAN HOORN DEC, NIJVELDT RJ, VAN LEEUWEN PAM et al.: Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol. (2002) 451:111-118.
  • COTELLE N: Role of flavonoids in oxidative stress. Curr. Topics Med. Chem. (2001) 1:569-590.
  • BORGES F, FERNANDES E, ROLEIRA F: Progress towards the discovery of xanthine oxidase inhibitors. Curr. Topics Med. Chem. (2002) 9:195-217.
  • KUROSAKI M, LI CALZI M, SCANZIANE I, GARATTINI E, TERAO M: Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide. Biochem. J. (1995) 306:225-234.
  • TERAO M, CAZZANIGA G, GHEZZI P et al.: Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo. Biochem. J. (1992) 283:863-870.
  • DELORIA L, ABBOTT V, GOODERHAM N, MANNERING GJ: Induction of xanthine oxidase and depression of cytochrome P450 by interferon inducers: genetic difference in the response of mice. Biochem. Biophys. Res. Commun. (1985) 131:109-114.
  • GHEZZI P, SACCARDO B, BIANCHI M: Induction of xanthine oxidase and heme oxygenase and depression of liver drug metabolism by interferon: a study with different recombinant interferons. J. Interferon Res. (1986) 6:251-256.
  • MOOCHHALA SM, RENTON KW: A role for xanthine oxidase in the loss of cytochrome P450 evoked by interferon. Can. J. Physiol. Pharmacol. (1991) 69:944-950.
  • LINDER N: Expression and regulation of human xanthine oxidoreductase. Academic Dissertation. University of Helsinki, Faculty of Medicine, Institute of Clinical Medicine (February 2005).
  • DEGEN G H, VOGEL C, ABEL J: Prostaglandin synthases. In: Enzyme systems that metabolise drugs and other xenobiotics. Ioannides C (Ed.), John Wiley & Sons, Chichester, UK (2002):189-229.
  • TAFAZOLI S, O’BRIEN PJ: Peroxidases: a role in the metabolism and side effects of drugs. Drug Discov. Today (2005) 10:617-625.
  • VOGEL C: Prostaglandin H synthases and their importance in chemical toxicity. Curr. Drug Metab. (2000) 1:391-404.
  • SPENCER AG, WOODS JW, ARAKAWA T, SINGER II, SMITH WL: Subcellular localization of prostaglandin endoperoxide H synthetases-1 and -2 by immunoelectron microscopy. J. Biol. Chem. (1998) 273:9886-9893.
  • ELING TE, THOMPSON DC, FOUREMAN GL, CURTIS JF, HUGHES MF: Prostaglandin H synthase and xenobiotic oxidation. Ann. Rev. Pharmacol. Toxicol. (1990) 30:1-45.
  • POTTER DW, HINSON JA: The 1- and 2-electron oxidation of acetaminophen catalysed by prostaglandin H synthase. J. Biol. Chem. (1987) 262:974-980.
  • POTTER DW, HINSON JA: Mechanism of acetaminophen oxidation to N-acetyl-p-benzoquinone imine by horseradish peroxidase and cytochrome P450. J. Biol. Chem. (1987) 262:966-973.
  • JENG W, RAMKISSOON A, PARMAN T, WELLS PG: Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration. FASEB J. (2006) 20:638-650.
  • WONG E, DELUCA C, BOILY C et al.: Characterization of autocrine inducible prostaglandin H synthase-2 (PGHS-2) in human osteosarcoma cells. Inflamm. Res. (1997) 46:51-59.
  • XUE S, SLATER DM, BENNETT PR, MYATT L: Induction of both cytosolic phospholipase A2 and prostaglandin H synthase-2 by interleukin-1 beta in WISH cells in inhibited by dexamethasone. Prostaglandins (1996) 51:107-124.
  • FRASIER-SCOTT K, HATZAKIS H, SEONG D, JONES CM, WU KK: Influence of natural and recombinant interleukin 2 on endothelial cell arachidonate metabolism. Induction of de novo synthesis of prostaglandin H synthase. J. Clin. Invest. (1988) 82:1877-1883.
  • HULKOWER KI, WERTHEIMER SJ, LEVIN W et al.: Interleukin-1 beta induces phospholipidase A2 and prostaglandin H synthase in rheumatoid synovial fibroblasts. Evidence for their roles in the production of prostaglandin E2. Arthritis Rheum. (1994) 37:653-661.
  • ANTEBY EY, JOHNSON RD, HUANG X, DRYDEN DK, NELSON DM, SADOVSKY Y: Lipopolysaccharide enhances the transcription of prostaglandin H synthase-2 gene in primary human trophoblasts. Am. J. Obstet. Gynecol. (1998) 178:469-473.
  • HEMPEL SL, MONICK MM, HUNNINGHAKE GW: Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes. J. Clin. Invest. (1994) 93:391-396.
  • DWORSKI RT, FUNK CD, OATES JA, SHELLER JR: Prednisone increases PGH-synthase 2 in atopic humans in vivo. Am. J. Respir. Crit. Care Med. (1997) 155:351-357.
  • MOOS PJ, MUSKARDIN DT, FITZPATRICK FA: Effect of taxol and taxotere on gene expression in macrophages: induction of the prostaglandin H synthase-2 isoenzyme. J. Immunol. (1999) 162:467-473.
  • JOHNSON JL, MADDIPATI KR: Paradoxical effets of resveratrol on the two prostaglandin H synthases. Prostaglandins Other Lipid Mediat. (1998) 56:131-143.
  • JOHNSON RD, POLAKOSKI K, EVERSON WV, NELSON DM: Aspirin induces increased expression of both prostaglandin H synthase-1 and prostaglandin H synthase-2 in cultured human placental trophoblast. Am. J. Obstet. Gynecol. (1997) 177:78-85.
  • KULKARNI AP: Lipoxygenases. In: Enzyme systems that metabolise drugs and other xenobiotics. Ioannides C (Ed.), John Wiley & Sons, Chichester, UK (2002):233-279.
  • KUHN H, THIELE BJ: The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. (1999) 449:7-11.
  • YAMAMOTO S, SUZUKI H, NANAMURA M, ISHIMURA K : Arachidonate 12-lipoxygenase isozymes. Adv. Exp. Med. Biol. (1999) 447:37-44.
  • KUHN H, BORNGRABER S: Mammalian 15-lipoxygenases. Enzymatic properties and biological implications. Adv. Exp. Med. Biol. (1999) 447:5-28.
  • ROY P, KULKARNI AP: Cooxidation of acrylonitrile by soybean lipoxygenase and partially purified human lung lipoxygenase. Xenobiotica (1999) 29:511-531.
  • ROY S, KULKARNI AP: Isolation and some properties of dioxygenase and co-oxidase activities of adult human liver cytosolic lypoxygenase. J. Biochem. Toxicol. (1996) 11:161-174.
  • JOSEPH P, SRINIVASAN SN, KULKARNI AP: Purification and partial characterization of lipoxygenase with dual catalytic activities from human term placenta. Biochem. J. (1993) 293:83-91.
  • JOSEPH P, SRINIVASAN SN, BYCZKOWSI JZ, KULKARNI AP: Bioactivation of benzo(a)pyrene-7,8-dihydrodiol catalysed by lipoxygenase purified from human term placenta and conceptal tissues. Reprod. Toxicol. (1994) 8:307-313.
  • DATTA K, KULKARNI AP: Oxidative metabolism of aflatoxin B1 by lipoxygenase purified from human term placeta and intrauterine conceptal tissues. Teratology (1994) 50:311-317.
  • KULKARNI AP, COOK DC: Hydroperoxidase activity of lipoxygenase: a potential pathway for xenobiotic metabolism in the presence of linoleic acid. Res. Comm. Clin. Pathol. Pharmacol. (1988) 61:305-314.
  • KULKARNI AP, COOK DC: Hydroperoxidase activity of lipoxygenase: hydrogen peroxide-dependent oxidation of xenobiotics. Biochem. Biophys. Res. Comm. (1988) 155:1075-1081.
  • AGUNDEZ JA, MARTINEZ C, BENITEZ J: Metabolism of aminopyrine and derivatives in man: in vivo studies of monomorphic and polymorphic metabolic pathways. Xenobiotica (1995) 25:417-427.
  • PEREZ-GILABERT M, SANCHEZ-FERRER A, GARCIA-CARMONA F: Oxidation of aminopyrine by the hydroperoxidase activity of lipoxygenase: a new proposed mechanism of N-demethylation. Free Rad. Biol. Med. (1997) 23:548-555.
  • YANG X, KULKARNI AP: N-dealkylation of aminopyrine catalysed by soybean lipoxygenase in the presence of hydrogen peroxide. J. Biochem. Mol. Tox. (1998) 12:175-183.
  • SMITH WL, MARNETT LJ: Prostaglandin endoperoxide synthase: structure and catalysis. Biochem. Biophys. Acta (1991) 1083:1-17.
  • ALBERT D, BUERKERT E, STEINHILBER D, WERZ O: Induction of 5-lipoxygenase activation in polymorphonuclear leukocytes by 1-oleoyl-2-acetylglycerol. Biochem. Biophys. Acta (2003) 1631:85-93.
  • BRUNGS M, RADMARK O, SAMUELSSON B, STEINHILBER D: On the incution of 5-lipoxygenase expression and activity in HL-60 cells: effects of vitamin D3, retinoic acid, DMSO and TGF beta. Biochem. Biophys. Res. Commun. (1994) 205:1572-1580.
  • LIAW YW, LIU YW, CHEN BK, CHANG WC: Induction of 12-lipoxygenase expression by phorbol 12-myristate 13-acetate in human epidermoid carcinoma A431 cells. Biochim. Biophys. Acta (1998) 1389:23-33.
  • HSI LC, XI X, WU Y, LIPPMAN SM: The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Mol. Cancer Ther. (2005) 4:1740-1746.
  • HSI LC, XI X, LOTAN R, SHUREIGI I, LIPPMAN SM: The histone deacetylase inhibitor suberoylanilide hydroxaluc acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Res. (2004) 64:8778-8781.
  • XU B, BHATTACHARJEE A, ROY B et al.: Interleukin-13 induction of 15-lipoxygenase gene expression requires p38 mitogen-activated protein kinase-mediated serine 727 phosphorylation of Stat1 and Stat3. Mol. Cell Biol. (2003) 23:3918-3928.
  • ROY B, CATHCART MK: Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J. Biol. Chem. (1998) 273:32023-32029.
  • NASSAR GM, MORROW JD, ROBERTS LJ II, LAKKIS FG, BADR KF: Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes. J. Biol. Chem. (1994) 269:27631-27634.
  • SIGAL E, SLOANE DL, CONRAD DJ: Human 15-lipoxygenase: induction by interleukin-4 and insights into positional specificity. J. Lipid Mediat. (1993) 6:75-88.
  • BRINCKMANN R, KUEHN H: Regulation of 15-lipoxygenase expression by cytokines. Adv. Exp. Med. Biol. (1997) 400B:599-604.
  • DUPONT H, DAVIES DS, STROLIN BENEDETTI M: Inhibition of cytochrome P450-dependent oxidation reactions by MAO inhibitors in rat liver microsomes. Biochem. Pharmacol. (1987) 36:1651-1657.
  • STROLIN BENEDETTI M, DOSTERT P, TIPTON KF: Contributions of monoamine oxidase to the metabolism of xenobiotics. Progr. Drug Metab. (1988) 11:149-174.
  • STROLIN BENEDETTI M, DOSTERT P: Contribution of monoamine oxidase to the metabolism of xenobiotics. Drug Metab. Rev. (1994) 26:507-535.
  • STROLIN BENEDETTI M, TIPTON KF: Monoamine oxidases and related amine oxidases as phase I enzymes in the metabolism of xenobiotics. J. Neural Transm. (1998) 52:149-171.
  • TIPTON KF, STROLIN BENEDETTI M: Amine oxidases and the metabolism of xenobiotics. In: Enzyme systems that metabolise drugs and other xenobiotics. Ioannides C (Ed.), John Wiley & Sons, Ltd, Chichester, UK (2002):95-146.
  • TIPTON KF, STROLIN BENEDETTI M: Amine oxidases and drug metabolism. In: Proceedings of the 15th International Symposium on Microsomes and Drug Oxidations – MDO 2004, Mainz, Germany. Medimond International Proceedings, Monduzzi Editore, Bologna, Italy (2004):47-54.
  • GONG B, BOOR PJ: The role of amine oxidases in xenobiotic metabolism. Expert Opin. Drug Metab. Toxicol. (2006) 2:559-571.
  • SALVA M, JANSAT JM, MARTINEZ-TOBED A, PALACIOS JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab. Dispos. (2003) 31:404-411.
  • OBACH RS, COX LM, TREMAINE LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab. Dispos. (2005) 33:262-270.
  • ALTAMURA AC, MORO AR, PERCUDANI M: Clinical pharmacokinetics of fluoxetine. Clin. Pharmacokinet. (1994) 26:201-214.
  • STROLIN BENEDETTI M, DOSTERT P: Overview of the present state of MAO inhibitors. J. Neural Transm. (1987) 23(Suppl.):103-119.
  • STROLIN BENEDETTI M, DOSTERT P: Stereochemical aspects of MAO interactions: reversible selective inhibitors of monoamine oxidase. Trends Pharmacol. Sci. (1985) 6:246-251.
  • TIPTON KF, DOSTERTP, STROLIN BENEDETTI M: Monoamine Oxidase and Disease. Prospects for therapy with reversible inhibitors. Academic Press, London, UK (1984).
  • RAMSAY RR: Substrate regulation of monoamine oxidases. J. Neural Transm. (1998) 52(Suppl.):139-147.
  • HUH K, LEE SI, SONG MI, SHIN US, PARK JM: Effect of panax ginseng in mouse liver with ethanol-induced monoamine oxidase activity. Korean J. Pharmacol. (1989) 25:713-800.
  • GIOVINE A, RENIS M, BERTOLINO A: Changes induced by ethanol in the monoamine oxidase activity of rat brain mitochondria. Boll. Soc. Ital. Biol. Sper. (1973) 49:226-232.
  • STROLIN BENEDETTI M, DOSTERT P: Monoamine oxidase: from physiology and pathophysiology to the design and clinical application of reversible inhibitors. Adv. Drug Res. (1992) 23:65-125.
  • DANILOVA RA, MOSKVITYNA TA, OBUKHOVA MF, BELOPOLSKAYA MV, ASHMARIN IP: Pargyline conjugate-induced long-term activation of monoamine oxidase as an immunological model for depression. Neurochem. Res. (1999) 24:1147-1151.
  • STROLIN BENEDETTI M, DOSTERT P, TIPTON KF: Developmental aspects of the monoamine-degrading enzyme monoamine oxidase. Dev. Pharmacol. Ther. (1992) 18:191-200.
  • GRIPOIS D, FERNANDEZ C: Thyroxine and propylthiouracil-induced changes in the activity of monoamine oxidase in the fetal rat. Mech. Ageing Dev. (1977) 6:407-412.
  • OBATA T, TAMURA M, YAMANAKA Y: Thyroid hormone-inducible monoamine oxidase inhibitor in rat liver cytosol. Biochem. Pharmacol. (1990) 40:811-815.
  • MAGEED AA, WILLIAMS D, FARAY B, MESSINA C, RAGAB AH: The effect of prednisone therapy on platelet monoamine oxidase and plasma catecholamine levels in children with acute lymphocytic leukomia. Cancer Res. Ther. Control (1993) 3:79-85.
  • SARABIA SF, LIEHR JG: Induction of monoamine oxidase B by 17 beta-estradiol in the hamster kidney preceding carcinogenesis. Arch. Biochem. Biophys. (1998) 355:249-253.
  • DOSTERT P, GUFFROY C, STROLIN BENEDETTI M, BOUCHER T: Inhibition of semicarbazide-sensitive amine oxidase by monoamine oxidase B inhibitors from the oxazolidinone series. J. Pharm. Pharmacol. (1984) 36:782-785.
  • O’SULLIVAN J, UNZETA M, HEALY J, O’SULLIVAN MI, DAVEY G, TIPTON KF: Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicol. (2004) 25:303-315.
  • SALTER-CID LM, WANG E, O’ROURKE AM et al.: Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase. J. Pharmacol. Exp. Ther. (2005) 315:553-562.
  • CALLINGHAM BA, CROSBIE AE, ROUS BA: Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. Prog. Brain Res. (1995) 106:305-321.
  • NORDQUIST JEL, GOEKTUERK C, ORELAND L: Semicarbazide-sensitive amine oxidase (SSAO) gene expression in alloxan-induced diabetes in mice. Mol. Med. (2002) 8:824-829.
  • LARGERON M, NEUDORFFER A, FLEURY MB: Oxidation of unactivated primary aliphatic amines catalyzed by an electrogenerated 3,4-azaquinone species: a small-molecule mimic of amine oxidases. Angew. Chem. Int. Ed. Engl. (2003) 42:1026-1029.
  • DUESTER G, FARRES J, FELDER MR et al.: Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharmacol. (1999) 58:389-395.
  • HÖÖG JO, STROMBERG P, HEDBERG JJ, GRIFFITHS WJ: The mammalian alcohol dehydrogenases interact in several metabolic pathways. Chem. Biol. Interact. (2003) 143-144:175-181.
  • JÖRNVALL IH, HÖÖG JO, PERSSON B, PARÉS X: Pharmacogenetics of the alcohol dehydrogenase system. Pharmacology (2000) 61:184-191.
  • SULTATOS LG, PASTINO GM, ROSENFELD CA, FLYNN EJ: Incorporation of the genetic control of alcohol dehydrogenase into a physiologically based pharmacokinetic model for ethanol in humans. Toxicol. Sci. (2004) 78:20-31.
  • SEITZ HK, ONETA CM: Gastrointestinal alcohol dehydrogenase. Nutrition Rev. (1998) 56:52-60.
  • EDENBERG HJ, BOSRON WF: Alcohol dehydrogenase. Compr. Toxicol. (1997) 3:119-131.
  • KENNEDY NP, TIPTON KF: Ethanol metabolism and alcoholic liver disease. Essays Biochem. (1990) 25:137-195.
  • YIN SH: Alcohol dehydrogenase: enzymology and metabolism. Alcohol Alcohol. (1994) 2:113-119.
  • ETHAMBUTOL (hydrochloride). In: Therapeutic Drugs, 2nd edn, Vol. 1. Dollery C (Ed.), Churchill Livingstone, Edinburgh, UK (1999):E68-E72.
  • BREDA M, STROLIN BENEDETTI M, BANI M et al.: Effect of rifabutin on ethambutol pharmacokinetics in healthy volunteers. Pharmacol. Res. (1999) 40:351-356.
  • PEETS EA, BUYSKE DA: Comparative metabolism of ethambutol and its l-isomer. Biochem. Pharmacol. (1964) 13:1403-1419.
  • PARANT F, MOULSMA M, GAGNIEU MC, LARDE G: Hydroxyzine and metabolites as a source of interference in carbamazepine particle-enhanced turbidimetric inhibition immunoassay (PETINIA). Ther. Drug Monit. (2005) 27:457-462.
  • WHOMSLEY R, STROLIN BENEDETTI M, ESPIÉ P, USUKI E, WOLFF A: The conversion of hydroxyzine to cetirizine is mediated by alcohol dehydrogenase. Drug Metab. Rev. (2005) 37:390.
  • SANDBERG M, YASAR U, STRÖMBERG P, HÖÖG JO, ELIASSON E: Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br. J. Pharmacol. (2002) 54:423-429.
  • WALSH JS, REESE MJ, THURMOND LM: The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem. Biol. Interact. (2002) 142:135-154.
  • THOMPSON CD, KINTER MT, McDONALD TL: Synthesis and in vitro reactivity of 3-carbomoyl-2-phenylpropionaldehyde and 2-phenylpropenal: putative reactive metabolites of felbamate. Chem. Res. Toxicol. (1996) 9:1225-1229.
  • KAPETANOVIC IM, TORCHIN CD, THOMPSON CD et al.: Potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab. Dispos. (1998) 26:1089-1095.
  • DIECKHAUS CM, MILLER TA, DUANE SOFIA R, MCDONALD TL: A mechanistic approach to understanding species differences in felbamate bioactivation: relevance to drug-induced idiosyncratic reactions. Drug Metab. Dispos. (2000) 28:814-822.
  • PICKENS CL, MILLIRON AR, FUSSNER AL et al.: Abuse of guaifenesin-containing medications generates an excess of a carboxylate salt of beta-(2-methoxyphenoxy)-lactic acid, a guaifenesin metabolite, and results in urolithiasis. Urology (1999) 54:23-27.
  • LING KH, LEESON GA, BURMASTER SD, HOOK RH, REITH MK, CHENG LK: Metabolism of terfenadine associated with CYP3A(4) activity in human hepatic microsomes. Drug. Metab. Dispos. (1995) 23:631-636.
  • JURIMA-ROMET M, CRAWFORD K, CYR T, INABA T: Terfenadine metabolism in human liver. In vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab. Dispos. (1994) 22:849-857.
  • YUN CH, OKERHOLM RA, GUENGERICH FP: Oxidation of the antihistamine drug terfenadine in human liver microsomes. Role of cytochrome P450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab. Dispos. (1993) 21:403-409.
  • LEESON GA, KEELEY FJ, ADAMSON N, THIELE J, HOOK R, CHENG L: Metabolism of terfenadine by human liver microsomes. Pharm. Res. (1993) 10(Suppl.):S329.
  • HASHIZUME T, MISE M, TERAUCHI YOL, FUJII T, MIYAZAKI H, INABA T: N-dealkylation and hydroxylation of ebastine by human liver cytochrome P450. Drug Metab. Dispos. (1998) 26:566-571.
  • HASHIZUME T, IMAOKA S, MISE M et al.: Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes. J. Pharmacol. Exp. Ther. (2002) 300:298-304.
  • DUAN J, McFADDEN GE, BORGERDING AJ et al.: Overexpression of alcohol dehydrogenase exacerbates ethanol-induced contractile defect in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. (2002) 282:H1216-H1222.
  • FEIERMAN DE, CEDERBAUM AI: Inhibition of microsomal oxidation of ethanol by pyrazole and 4-methylpyrazole in vitro. Increased effectiveness after induction by pyrazole and 4-methylpyrazole. Biochem. J. (1986) 239:671-677.
  • XIE PT, HURLEY TD: Methione-141 directly influences the binding of 4-methylpyrazole in human σσ alcohol dehydrogeanse. Protein Sci. (1999) 8:2639-2644.
  • ONO S, STENIOUS C, CHRISTIAN L, HARRIS C, IVEY C: More about the testosterone induction of kidney alcohol dehydrogenase activity in the mouse. Biochem. Genet. (1970) 4:565-577.
  • CECI JD, LAWTHER R, DUESTER G et al.: Androgen induction of alcohol dehydrogenase in mouse kidney. Studies with a cDNA probe confirmed by nucleotide sequence analysis. Gene (1986) 41:217-224.
  • FELDER MR, WATSON G, HUFF MO, CECI JD: Mechanism of induction of mouse kidney alcohol dehydrogenase by androgen. Androgen-induced stimulation of transcription of the Adh-1 gene. J. Biol. Chem. (1988) 263:14531-14537.
  • QULALI M, ROSS RA, CRABB DW: Estradiol induces class I alcohol dehydrogenase activity and mRNA in kidney of female rats. Arch. Biochem. Biophys. (1991) 288:406-413.
  • STEARNS RA, CHAKRAVARTY PK, CHEN R, CHIU SH: Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab. Dispos. (1995) 23:207-215.
  • TESTA B: Monooxygenase-catalyzed oxidation of oxygen- and sulfur-containing compounds. In: The metabolism of drugs and other xenobiotics Biochemistry of redox reactions. Testa B, Caldwell J (Eds), Academic Press, San Diego, USA (1995):235-283.
  • ESPINET C, ARGILES JM: Ethanol and acetaldehyde levels in rat blood and tissues after an acute ethanol administration. IRCS Med. Sci. (1984) 12:830-831.
  • HARCOMBE AA, RAMSAY L, KENNA JG et al.: Circulating antibodies to cardiac protein-acetaldehyde adducts in alcoholic heart muscle disease. Clin. Sci. (Colch) (1995) 88:263-268.
  • HOERNER M, BEHRENS UJ, WORNER TM et al.: The role of alcoholism and liver disease in the appearance of serum antibodies against acetyaldehyde adducts. Hepatology (1988) 8:569-574.
  • NUUTINEN H, LINDROS KO, SALASPURO M: Determinants of blood acetaldehyde level during ethanol oxidation in chronic alcooholics. Alcohol Clin. Exp. Res. (1983) 7:163-168.
  • SLADEK NE, MANTHEY CL, MAKI PA, ZHANG Z, LANDKAMER GJ: Xenobiotic oxidation catalyzed by aldehyde dehydrogenases. Drug Metab. Rev. (1989) 20:697-720.
  • SLADEK NE: Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J. Biochem. Mol. Toxicol. (2003) 17:7-23.
  • VASILIOU V, PAPPA A, ESTEY T: Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab. Rev. (2004) 36:279-299.
  • TIPTON KF, HENEHAN GTM, HARRINGTON MC: Cellular and intracellular distribution of aldehyde dehydrogenases. In: Human Metabolism of alcohol. Vol. II. Crow KE (Ed.), Baalralon Cre Press, Boca Raton, Florida, USA (1989):105-116.
  • ZHANG QY, DUNBAR D, KAMINSKY L: Human cytochrome P450 metabolism of retinals to retinoic acids. Drug Metab. Dispos. (2000) 28:292-297.
  • REULAND SN, VLASOV AP, KRUPENKO SA: Modular organization of FDH: Exploring the basis of hydrolase catalysis. Protein Sci. (2006) 15:1076-1084.
  • DIB M, GARREL C, FAVIER A, ROBIN V, DESNUELLE C: Can molondialdehyde be used as a biological marker of progression in neurodegenerative disease? J. Neurol. (2002) 249:367-374.
  • KELSON TL, SECOR MCVOY JR, RIZZO WB: Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization. Biochem. Biophys. Act. (1997) 1335:99-110.
  • DE LAURENZI V, ROGERS GR, HAMROCK DJ et al.: Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet. (1996) 12:52-57.
  • WILLEMSEN MA, IJLST L, STEIJLEN PM et al.: Clinical, biochemical and molecular genetic characteristics of 19 patients with the Sjögren–Larsson syndrome. Brain (2001) 124(Pt 7):1426-1437.
  • FORTE-MCROBBIE C, PIETRUSZKO R: Human glutamic-gamma-semialdehyde dehydrogenase. Kinetic mechanism. Biochem. J. (1989) 261:935-943.
  • VALLE D, GOODMAN SI, APPLEGARTH DA, SHIH VE, PHANG JM: Type II hyperprolinemia. Delta1-pyrroline-5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J. Clin. Invest. (1976) 58:598-603.
  • PEARL PL, GIBSON KM, ACOSTA MT et al.: Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology (2003) 60:1413-1417.
  • TAO YH, YUAN Z, TANG XQ, XU HB, YANG XL: Inhibition of GABA shunt enzymes’ activity by 4-hydroxybenzaldehyde derivatives. Bioorg. Med. Chem. Lett. (2006) 16:592-595.
  • AMBROZIAK W, PIETRUSZKO R: Human aldehyde dehydrogenase: metabolism of putrescine and histamine. Alcoholism Clin. Exp. Res. (1987) 11:528-532.
  • AMBROZIAK W, PIETRUSZKO R: Human aldhehyde dehydrogenase. Activity with aldehyde metabolites of monoamines, diamines, and polyamines. J. Biol. Chem. (1991) 266:13011-13018.
  • VANDER JAGT DL, HUNSAKER LA: Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chemico-Biol. Interact. (2003) 143-144:341-351.
  • REKHA GK, DEVARAJ VR, SREERAMA L, LEE MJ, NAGASAWA H, SLADEK NE: Inhibition of human class 3 aldehyde dehydrogenase, and sensitization of tumor cells that express significant amounts in this enzyme to oxazaphosphorines, by chlorpropamide analogues. Biochem. Pharmacol. (1998) 55:465-474.
  • CHEN Z, ZHANG J, STAMLER JS: Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl. Acad. Sci. USA (2002) 99:8306-8311.
  • MESSIHA FS: Disulfiram inhibition and pentobarbital induction of rat testicular aldehyde dehydrogenase. Proc. West. Pharmacol. Soc. (1979) 22:125-128.
  • PETERSON DR, HJELLE JJ: Metabolic interactions of aldehyde dehydrogenase with therapeutic and toxic agents. In: Enzymology of carbonyl Metabolism: aldehyde dehydrogenase and aldo/keto reductase. Alan R (Ed.), Liss, New York, USA (1982):103-120.
  • VASILIOU V, TOERROENEN R, MALAMAS M, MARSELOS M: Inducibility of liver cytosolic aldehyde dehydrogenase activity in various animal species. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. (1989) 94:671-675.
  • VASILIOU V, MARSELOS M: Changes in the inducibility of a hepatic aldehyde dehydrogenase by various effectors. Arch. Toxicol. (1989) 63:221-225.
  • PAPPAS P, SOTIROPOULOU M, KARAMANAKOS P, KOSTOULA A, LEVIDIOTOU S, MARSELOS M: Acute-phase response to benzo(a)pyrene and induction of rat ALDH3A1. Chem. Biol. Interact. (2003) 143-144:55-62.
  • TANK AW, DEITRICH RA, WEINER H: Effects of induction of rat liver cytosolic aldehyde dehydrogenase on the oxidation of biogenic aldehydes. Biochem. Pharmacol. (1986) 35:4563-4569.
  • DUNN TJ, LINDAHL R, PITOT HC: Differential gene expression in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Noncoordinate regulation of a TCDD-induced aldehyde dehydrogenase and cytochrome P450c in the rat. J. Biol. Chem. (1988) 263:10878-10886.
  • SREERAMA L, SLADEK NE: Identification of a methylcholanthrene-induced aldehyde dehydrogenase in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Cancer Res. (1994) 54:2176-2185.
  • YOON KA, NAKAMURA Y, ARAKAWA H: Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. (2004) 49:134-140.
  • KOENIG U, BACH J, TSCHACHLER E: Treatment of human skin with retinoic acid highly induces aldehyde dehydrogenase 6 (ALDH6). Arch. Dermatol. Res. (2004) 295:8-9.
  • ULRICH K, AMATSCHEK S, UTHMAN A, BACH J, TSCHACHLER E: Treatment of human skin with retinoic acid strongly induces aldehyde dehydrogenase 1A3. J. Invest. Dermatol. (2004) 122:A87.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.