460
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Oxazaphosphorines: new therapeutic strategies for an old class of drugs

, , , (Professor) , &
Pages 919-938 | Published online: 06 May 2010

Bibliography

  • Lehmann-Che J, André F, Desmedt C, Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers. Oncologist 2010;15(3):246-52
  • Sarosy GA, Hussain MM, Seiden MV, Ten-year follow-up of a Phase II study of dose-intense paclitaxel with cisplatin and cyclophosphamide as initial therapy for poor-prognosis, advanced-stage epithelial ovarian cancer. Cancer 2010;116(6):1476-84
  • Garcia AA, Hirte H, Fleming G, Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital Phase II consortia. J Clin Oncol 2008;26(1):76-82
  • Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000;6(4):291-304
  • Teicher BA, Cucchi CA, Lee JB, In vitro studies of crossresistance patterns in human cell lines. Cancer Res 1986;46:4379-83
  • Lilley ER, Rosenberg MC, Elion GB, Synergistic interactions between cyclophosphamide or melphalan and VP-16 in a human rhabdomyosarcoma xenograft. Cancer Res 1990;15:284-7
  • Boos J, Silies H, Hohenlochter B. Short-term versus continuous infusion: no influence on ifosfamide side-chain metabolism. Eur J Cancer 1995;31A:2417-8
  • Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 1991;42(5):781-95
  • Salminen E, Nikkanen V, Lindholm L. Palliative chemotherapy in non-Hodgkin's lymphoma. Oncology 1997;54(2):108-11
  • Latz D, Nassar N, Frank R. Trofosfamide in the palliative treatment of cancer: a review of the literature. Onkologie 2004;27(6):572-6
  • Stoelting S, Trefzer T, Kisro J, Low-dose oral metronomic chemotherapy prevents mobilization of endothelial progenitor cells into the blood of cancer patients. In Vivo 2008;22:831-6
  • Atzpodien J, Morawek L, Fluck M, Reitz M. Bleomycin, vinorelbine and trofosfamide in relapsed stage IV cutaneous malignant melanoma patients. Cancer Chemother Pharmacol 2009;64(5):901-5
  • Estlin EJ, Veal GJ. Clinical and cellular pharmacology in relation to solid tumours of childhood. Cancer Treat Rev 2003;29(4):253-73
  • Stresser DM, Kupfer D. Monospecific antipeptide antibody to cytochrome P-450 2B6. Drug Metab Dispos 1999;27(4):517-25
  • Gibson GG, Plant NJ, Swales KE, Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002;32:165-206
  • Liang J, Huang M, Duan W, Design of new oxazaphosphorine anticancer drugs. Curr Pharm Des 2007;13(9):963-78
  • Chang TKH, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993;53:5629-37
  • Roy P, Yu LJ, Crespi CL, Waxman DJ. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999a;27(6):655-66
  • Walker D, Flinois JP, Monkman SC, Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem Pharmacol 1994;47:1157-63
  • Boddy AV, Furtun Y, Sardas S, Individual variation in the activation and inactivation of metabolic pathways of cyclophosphamide. J Natl Cancer Inst 1992;84:1744-8
  • Paci A, Martens T, Royer J. Anodic oxidation of ifosfamide and cyclophosphamide: a biomimetic metabolism model of the oxazaphosphorinane anticancer drugs. Bioorg Med Chem Lett 2001;11:1347-49
  • Boos J, Küpker F, Blaschke G, Jürgens H. Trofosfamide metabolism in different species-ifosfamide is the predominant metabolite. Cancer Chemother Pharmacol 1993;33(1):71-6
  • Preiss R, Baumann F, Stefanovic D, Investigations on the pharmacokinetics of trofosfamide and its metabolites-first report of 4-hydroxy-trofosfamide kinetics in humans. Cancer Chemother Pharmacol 2004;53(6):496-502
  • Fenselau C, Kan MN, Rao SS, Identification of aldophsophamide as a metabolite of cyclophosphamide in vitro and in vivo in humans. Cancer Res 1977;37:2538-43
  • Sladek N. Metabolism of oxazaphosphorines. Pharmacol Ther 1988;37:301-55
  • Shulman-Roskes EM, Noe DA, Gamcsik MP, The partitioning of phosphoramide mustard and its aziridinium ions among alkylation and P-N bond hydrolysis reactions. J Med Chem 1998;41(4):515-29
  • Flowers JL, Ludeman SM, Gamcsik MP, Evidence for a role of chloroethylaziridine in the cytotoxicity of cyclophosphamide. Cancer Chemother Pharmacol 2000;45(4):335-44
  • Millis KK, Colvin ME, Shulman-Roskes EM, Comparison of the protonation of isophosphoramide mustard and phosphoramide mustard. J Med Chem 1995;38(12):2166-75
  • Gamcsik MP, Ludeman SM, Shulman-Roskes EM, Protonation of phosphoramide mustard and other phosphoramides. J Med Chem 1993;36(23):3636-45
  • Lu H, Chan KK. Pharmacokinetics of N-2-chloroethylaziridine, a volatile cytotoxic metabolite of cyclophosphamide, in the rat. Cancer Chemother Pharmacol 2006;58(4):532-9
  • Springer JB, Colvin ME, Colvin OM, Ludeman SM. Isophosphoramide mustard and its mechanism of bisalkylation. J Org Chem 1998;63:7218-22
  • Busse D, Busch FW, Bohnenstengel F, Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997;15:1885-96
  • Goren MP, Wright RK, Pratt CB, Pell FE. Dechloroethylation of ifosfamide and neurotoxicity. Lancet 1986;2(8517):1219-20
  • Ren S, Yang JS, Kalhorn TF, Slattery JT. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997;57:4229-35
  • Roy P, Tretyakov O, Wright J, Waxman DJ. Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab Dispos 1999b;27(11):1309-18
  • McCune JS, Risler LJ, Phillips BR, Contribution of CYP3A5 to hepatic and renal ifosfamide N-dechloroethylation. Drug Metab Dispos 2005;33(7):1074-81
  • Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000;59(8):961-72
  • Zhang J, Tian Q, Zhou SF. Clinical Pharmacology of Cyclophosphamide and Ifosfamide. Curr Drug Ther 2006;1:55-84
  • DiMaggio JR, Brown R, Baile WF, Schapira D. Hallucinations and ifosfamide-induced neurotoxicity. Cancer 1994;73(5):1509-14
  • Skinner R, Sharkey IM, Pearson AD, Craft AW. Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 1993;11(1):173-90
  • May-Manke A, Kroemer H, Hempel G, Investigation of the major human hepatic cytochrome P450 involved in 4-hydroxylation and N-dechloroethylation of trofosfamide. Cancer Chemother Pharmacol 1999;44(4):327-34
  • Yu L, Waxman DJ. Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450. Drug Metab Dispos 1996;24(11):1254-62
  • Holm KA, Kindberg CG, Stobaugh JF, Stereoselective pharmacokinetics and metabolism of the enantiomers of cyclophosphamide. Preliminary results in humans and rabbits. Biochem Pharmacol 1990;39:1375-84
  • Miranda-Silva C, Fernandes BJ, Donadi EA, Influence of glomerular filtration rate on the pharmacokinetics of cyclophosphamide enantiomers in patients with lupus nephritis. J Clin Pharmacol 2009;49(8):965-72
  • Williams ML, Wainer IW, Embree L, Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 1999a;11:569-74
  • Chang TK, Yu L, Maurel P, Waxman DJ. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 1997b;57(10):1946-54
  • Chen CS, Jounaidi Y, Waxman DJ. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos 2005;33(9):1261-7
  • Corlett SA, Parker D, Chrystyn H. Pharmacokinetics of ifosfamide and its enantiomers following a single 1 h intravenous infusion of the racemate in patients with small cell lung carcinoma. Br J Clin Pharmacol 1995;39:452-5
  • Wainer IW, Ducharme J, Granvil CP. The N-dechloroethylation of ifosfamide: using stereochemistry to obtain an accurate picture of a clinically relevant metabolic pathway. Cancer Chemother Pharmacol 1996;37:332-6
  • Granvil CP, Ducharme J, Leyland-Jones B, Stereoselective pharmacokinetics of ifosfamide and its 2- and 3-N-dechloroethylated metabolites in female cancer patients. Cancer Chemother Pharmacol 1996;37:451-6
  • Granvil CP, Madan A, Sharkawi M, Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. Drug Metab Dispos 1999;27:533-41
  • Boddy AV, Proctor M, Simmonds D, Pharmacokinetics, metabolism and clinical effect of ifosfamide in breast cancer patients. Eur J Cancer 1995;31A(1):69-76
  • Williams ML, Wainer IW. Cyclophosphamide versus ifosfamide: to use ifosfamide or not to use, that is the three-dimensional question. Curr Pharm Des 1999b;5:665-72
  • Kurowski V, Wagner T. Comparative pharmacokinetics of ifosfamide, 4-hydroxyifosfamide, chloroacetaldehyde, and 2- and 3-dechloroethylifosfamide in patients on fractionated intravenous ifosfamide therapy. Cancer Chemother Pharmacol 1993;33(1):36-42
  • Brüggemann SK, Kisro J, Wagner T. Ifosfamide cytotoxicity on human tumor and renal cells: role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Cancer Res 1997;57:2676-80
  • Spengler SJ, Singer B. Formation of interstrand cross-links in chloroacetaldehyde-treated DNA demonstrated by ethidium bromide fluorescence. Cancer Res 1988;48:4804-6
  • Sood C, O'Brien PJ. Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes. Biochem Pharmacol 1993;46:1621-6
  • Brüggemann SK, Radike K, Braasch K, Chloroacetaldehyde: mode of antitumor action of the ifosfamide metabolite. Cancer Chemother Pharmacol 2006;57(3):349-56
  • Lee FY. Glutathione diminishes the anti-tumour activity of 4-hydroperoxycyclophosphamide by stabilising its spontaneous breakdown to alkylating metabolites. Br J Cancer 1991;63:45-50
  • Dirven HA, Ommen Bv, Bladeren PJv. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 1994a;54:6215-20
  • Dirven HA, Venekamp JC, Ommen B, Bladeren PJ. The interaction of glutathione with 4-hydroxycyclophosphamide and phosphoramidemustard, studied by 31P nuclear magnetic resonance spectroscopy. Chem Biol Interact 1994b;93:185-96
  • Sladek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 2003;17(1):7-23
  • Sladek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Des 1999;5(8):607-25
  • Dockham PA, Sreerama L, Sladek NE. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxification of the oxazaphosphorines. Drug Metab Dispos 1997;25(12):1436-41
  • Sladek NE. Anticancer drugs reactive metabolism and drug interactions. Pergamon Press, Tarrytown, NY; 1994
  • Townsend AJ, Leone-Kabler S, Haynes RL, Selective protection by stably transfected human ALDH3A1 (but not human ALDH1A1) against toxicity of aliphatic aldehydes in V79 cells. Chem Biol Interact 2001;30(130-132):261-73
  • Huang CY, Huang KL, Cheng TJ, The GST T1 and CYP2E1 genotypes are possible factors causing vinyl chloride induced abnormal liver function. Arch Toxicol 1997;71(8):482-8
  • Dubourg L, Michoudet C, Cochat P, Baverel G. Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol 2001;12(8):1615-23
  • Dubourg L, Taniere P, Cochat P, Toxicity of chloroacetaldehyde is similar in adult and pediatric kidney tubules. Pediatr Nephrol 2002;17(2):97-103
  • Kohn KW, Hartley JA, Mattes WB. Mechanisms of DNA sequence alkylation of guanine-N7 positions by nitrogen mustards. Nucleic Acids Res 1987;14:10531-45
  • Crook TR, Souhami RL, McLean AEM. Cytotoxicity. DNA cross-linking and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res 1996;46:5029-34
  • Hickman JA. Apoptosis and cancer chemotherapy. Cancer Metastasis Rev 1992;11:121-39
  • Schwartz PS, Waxman DJ. Cyclophosphamide induces caspase 9-dependent apoptosis in 9 L tumor cells. Mol Pharmacol 2001;60:1268-79
  • Karle P, Renner M, Salmons B, Gunzburg WH. Necrotic, rather than apoptotic, cell death caused by cytochrome P450-activated ifosfamide. Cancer Gene Ther 2001;8:220-30
  • Gamcsik MP, Dolan ME, Andersson BS, Murray D. Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des 1999;5(8):587-605
  • Buckner CD, Rudolph RH, Fefer A, High dose cyclophosphamide therapy for malignant disease. Cancer (Phila) 1972;29:357-65
  • Berrigan MJ, Marinello AJ, Pavelic Z, Protective role of thiols in cyclophosphamide-induced urotoxicity and depression of hepatic drug metabolism. Cancer Res 1982;42(9):3688-95
  • Brock N, Stekar J, Pohl J, Acrolein.The causative factor of urotoxic side-effects of cyclophosphamide, ifosphamide, trophosphamide and sufosfamide. Arzneimittelforschung 1979;29:659-61
  • Cox PJ. Cyclophosphamide cystitis-identification of acrolein as the causative agent. Biochem Pharmacol 1979;28(13):2045-9
  • Broadhead CL, Walker D, Skinner R, Simmons NL. Differential cytotoxicity of ifosfamide and its metabolites in renal epithelial cell cultures. Toxicol in Vitro 1998;12(3):209-17
  • Fontana-Donatelli G, Dambrosio F. Observations on the behaviour of hematic crasis in 134 patients subjected to chemotherapeutic treatment with cyclophosphamide for genital neoplasms. Ann Obstet Gynecol Med Perinat 1963;85:929-40
  • Korkmaz A, Topal T, Oter S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol 2007;23(5):303-12
  • Stillwell TJ, Benson RCJ, Burgert EOJ. Cyclophosphamide-induced hemorrhagic cystitis in Ewing's sarcoma. J Clin Oncol 1988;6(1):76-82
  • Talar-Williams C, Hijazi YM, Walther MM, Cyclophosphamide-induced cystitis and bladder cancer in patients with Wegener granulomatosis. Ann Intern Med 1996;124(5):477-84
  • Siu LL, Moore MJ. Use of mesna to prevent ifosfamide-induced urotoxicity. Support Care Cancer 1998;6(2):144-54
  • Ormstad K, Orrenius S, Låstbom T, Pharmacokinetics and metabolism of sodium 2-mercaptoethanesulfonate in the rat. Cancer Res 1983;43(1):333-8
  • Mohrmann M, Ansorge S, Schönfeld B, Brandis M. Dithio-bis-mercaptoethanesulphonate (DIMESNA) does not prevent cellular damage by metabolites of ifosfamide and cyclophosphamide in LLC-PK1 cells. Pediatr Nephrol 1994;8(4):458-65
  • Mota JM, Brito GA, Loiola RT, Interleukin-11 attenuates ifosfamide-induced hemorrhagic cystitis. Int Braz J Urol 2007;33(5):704-10
  • Batista CK, Mota JM, Souza ML, Amifostine and glutathione prevent ifosfamide- and acrolein-induced hemorrhagic cystitis. Cancer Chemother Pharmacol 2007;59(1):71-7
  • Berrak SG, Pearson M, Berberoğlu S, High-dose ifosfamide in relapsed pediatric osteosarcoma: therapeutic effects and renal toxicity. Pediatr Blood Cancer 2005;44(3):251-9
  • Prince HM, Gardyn J, Millward MJ, Ifosfamide in combination with paclitaxel or doxorubicin: regimens which effectively mobilize peripheral blood progenitor cells while demonstrating anti-tumor activity in patients with metastatic breast cancer. Bone Marrow Transplant 1999;23(5):427-35
  • Skinner R. Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 2003;41(3):190-7
  • Oberlin O, Fawaz O, Rey A, Long-term evaluation of Ifosfamide-related nephrotoxicity in children. J Clin Oncol 2009;27(32):5350-5
  • Jones DP, Chesney RW. Renal toxicity of cancer chemotherapeutic agents in children: ifosfamide and cisplatin. Curr Opin Pediatr 1995;7(2):208-13
  • Fujieda M, Matsunaga A, Hayashi A, Children's toxicology from bench to bed-Drug-induced renal injury (2): Nephrotoxicity induced by cisplatin and ifosfamide in children. J Toxicol Sci 2009;34(Suppl 2):251-7
  • Stöhr W, Paulides M, Bielack S, Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer 2007;48(4):447-2
  • Skinner R, Cotterill SJ, Stevens MC. Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children's Cancer Study Group. Br J Cancer 2000;82(10):1636-45
  • English MW, Skinner R, Pearson AD, The influence of ifosfamide scheduling on acute nephrotoxicity in children. Br J Cancer 1997;75(9):1356-9
  • Aleksa K, Woodland C, Koren G. Young age and the risk for ifosfamide-induced nephrotoxicity: a critical review of two opposing studies. Pediatr Nephrol 2001;16(12):1153-8
  • Pratt CB, Green AA, Horowitz ME, Central nervous system toxicity following the treatment of pediatric patients with ifosfamide/mesna. J Clin Oncol 1986;4(8):1253-61
  • Dufour C, Grill J, Sabouraud P, Ifosfamide induced encephalopathy: 15 observations. Arch Pediatr 2006;13(2):140-5
  • Kerdudo C, Orbach D, Sarradet JL, Doz F. Ifosfamide neurotoxicity: an atypical presentation with psychiatric manifestations. Pediatr Blood Cancer 2006;47(1):100-2
  • Shuper A, Stein J, Goshen J, Subacute central nervous system degeneration in a child: an unusual manifestation of ifosfamide intoxication. J Child Neurol 2000;15(7):481-3
  • Norwood R, Anderson MD, Deepak S, Tandon MD. Ifosfamide extrapyramidal neurotoxicity. Cancer 2001;68(1):72-5
  • Busse D, Busch FW, Schweizer E, Fractionated administration of high-dose cyclophosphamide: influence on dose-dependent changes in pharmacokinetics and metabolism. Cancer Chemother Pharmacol 1999;43(3):263-8
  • Ghosn M, Carde P, Leclerq B, Ifosfamide/mesna related encephalopathy: a case report with a possible role of phenobarbital in enhancing neurotoxicity. Bull Cancer 1988;75(4):391-2
  • Durand JP, Gourmel B, Mir O, Goldwasser F. Antiemetic neurokinin-1 antagonist aprepitant and ifosfamide-induced encephalopathy. Ann Oncol 2007;18(4):808-9
  • Curtin JP, Koonings PP, Gutierrez M, Morrow JBSCP. Ifosfamide-induced neurotoxicity. Gynecol Oncol 1991;42(3):193-6
  • Cerny T, Castiglione M, Brunner K, Ifosfamide by continuous infusion to prevent encephalopathy. Lancet 1990;335(8682):175
  • Kurowski V, Cerny T, Küpfer A, Wagner T. Metabolism and pharmacokinetics of oral and intravenousifosfamide. J Cancer Res Clin Oncol 1991;117(Suppl 4):148-53
  • Lind MJ, Margison JM, Cerny T, Comparative pharmacokinetics and alkylating activity of fractionated intravenous and oral ifosfamide in patients with bronchogenic carcinoma. Cancer Res 1989;49(3):753-7
  • Zamlauski-Tucker MJ, Morris ME, Springate JE. Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol 1994;129(1):170-5
  • Mohrmann M, Pauli A, Ritzer M, Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide. Ren Physiol Biochem 1992;15(6):289-301
  • Mohrmann M, Küpper N, Schönfield B, Brandis M. Ifosfamide and mesna: effects on the Na/H exchanger activity in renal epithelial cells in culture (LLC-PK1). Ren Physiol Biochem 1995;18(3):118-27
  • Yaseen Z, Michoudet C, Baverel G, Dubourg L. In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro. Pediatr Nephrol 2008;23(4):611-8
  • Springate J, Chan K, Lu H, Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In Vitro Cell Dev Biol Anim 1999;35(6):314-7
  • Sood C, O'Brien PJ. 2-Chloroacetaldehyde-induced cerebral glutathione depletion and neurotoxicity. Br J Cancer Suppl 1996;27:S287-93
  • Springate J, Taub M. Ifosfamide toxicity in cultured proximal renal tubule cells. Pediatr Nephrol 2007;22(3):358-65
  • Aleksa K, Halachmi N, Ito S, Koren G. A tubule cell model for ifosfamide nephrotoxicity. Can J Physiol Pharmacol 2005;83(6):499-508
  • Knouzy B, Dubourg L, Baverel G, Michoudet C. Targets of chloroacetaldehyde-induced nephrotoxicity. Toxicol In Vitro 2010;24(1):99-107
  • Visarius TM, Stucki JW, Lauterburg BH. Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats. J Pharmacol Exp Ther 1999;289(2):820-4
  • DiCataldo A, Astuto M, Rizzo G, Neurotoxicity during ifosfamide treatment in children. Med Sci Monit 2009;15(1):CS22-5
  • Küpfer A, Aeschlimann C, Cerny T. Methylene blue and the neurotoxic mechanisms of Ifosfamide encephalopathy. Eur J Clin Pharmacol 1996;50(4):249-52
  • Chatton JY, Idle JR, Vågbø CB, Magistretti PJ. Insights into the mechanisms of ifosfamide encephalopathy: drug metabolites have agonistic effects on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and induce cellular acidification in mouse cortical neurons. J Pharmacol Exp Ther 2001;299(3):1161-8
  • Gonzalez-Angulo AM, Orzano JA, Davila E. Ifosfamide-induced encephalopathy. South Med J 2002;95(10):1215-7
  • Cerny T, Küpfer A. The enigma of ifosfamide encephalopathy. Ann Oncol 1992;3(9):679-81
  • Zaki EL, Springate JE, Taub M. Comparative toxicity of ifosfamide metabolites and protective effect of mesna and amifostine in cultured renal tubule cells. Toxicol In Vitro 2003;17(4):397-402
  • Brock N, Pohl J. Prevention of urotoxic side effects by regional detoxification with increased selectivity of oxazaphosphorine cytostatics. IARC Sci Publ 1986;78:269-79
  • Schwerdt G, Gordjani N, Benesic A, Chloroacetaldehyde- and acrolein-induced death of human proximal tubule cells. Pediatr Nephrol 2006;21(1):60-7
  • Chen N, Aleksa K, Woodland C, N-Acetylcysteine prevents ifosfamide-induced nephrotoxicity in rats. Br J Pharmacol 2008;153(7):1364-72
  • Ferrero JM, Eftekari P, Largillier R, [Treatment of ifosfamide induced encephalopathy with methylene-blue]. Bull Cancer 1995;82(7):598-9
  • Küpfer A, Aeschlimann C, Wermuth B, Cerny T. Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue. Lancet 1994;343(8900):763-4
  • Frisk P, Stålberg E, Strömberg B, Jakobson A. Painful peripheral neuropathy after treatment with high-dose ifosfamide. Med Pediatr Oncol 2001;37(4):379-82
  • Pelgrims J, Vos FD, Van den Brande J, Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: report of 12 cases and a review of the literature. Br J Cancer 2000;82:291-94
  • Aeschlimann C, Küpfer A, Schefer H, Cerny T. Comparative pharmacokinetics of oral and intravenous ifosfamide/mesna/methylene blue therapy. Drug Metab Dispos 1998;26(9):883-90
  • Patel PN. Methylene blue for management of Ifosfamide-induced encephalopathy. Ann Pharmacother 2006;40(2):299-303
  • Buesa JM, García-Teijido P, Losa R, Fra J. Treatment of ifosfamide encephalopathy with intravenous thiamine. Clin Cancer Res 2003;9(12):4636-7
  • Hamadani M, Awan F. Role of thiamine in managing ifosfamide-induced encephalopathy. J Oncol Pharm. Pract 2006;12:237-9
  • Kasper B, Harter C, Meissner J, Prophylactic treatment of known ifosfamide-induced encephalopathy for chemotherapy with high-dose ifosfamide? Support Care Cancer 2004;12(3):205-7
  • Brain EG, Yu LJ, Gustafsson K, Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br J Cancer 1998;77:1768-76
  • Yu LJ, Drewes P, Gustafsson K, In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther 1999;288:928-37
  • Wei MX, Tamiya T, Chase M, Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum Gene Ther 1994;5:969-78
  • Philpott GW, Shearer W, Bower RJ, Parker CW. Selective cytotoxicity of hapten-substituted cells with an antibody-enzyme conjugate. J Immunol 1973;111(3):921-9
  • Fang L, Sun D. Predictive physiologically based pharmacokinetic model for antibody-directed enzyme prodrug therapy. Drug Metab Dispos 2008;36(6):1153-65
  • Kan O, Griffiths L, Baban D, Direct retroviral delivery of human cytochrome P450 2B6 for gene-directed enzyme prodrug therapy of cancer. Cancer Gene Ther 2001;8:473-82
  • Kan O, Kingsman S, Naylor S. Cytochrome P450-based cancer gene therapy: current status. Expert Opin Biol Ther 2002;2:857-68
  • Braybrooke JP, Slade A, Deplanque G, Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma. Clin Cancer Res 2005;11:1512-20
  • Chen L, Waxman DJ. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res 1995;55(3):581-9
  • Samuel S, Keese M, Lux A, Peritoneal cancer treatment with CYP2B1 transfected, microencapsulated cells and ifosfamide. Cancer Gene Ther 2006;13(1):65-73
  • Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme catalyzed activation of anticancer prodrugs. Pharmacol Rev 2004;56:53-102
  • Roy P, Waxman DJ. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Toxicol In Vitro 2006;20(2):176-86
  • Connors TA, Cox PJ, Farmer PB, Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and iphosphamide. Biochem Pharmacol 1974;23:115-29
  • Reske SN, Grillenberger KG, Glatting G, Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med 1997;38:1344-8
  • Seker H, Bertram B, Wieber M. Possible role of the cytosolic b-glucosidase in the metabolism of saccharide-coupled platinum and ifosfamide mustard in tumor cells. Monduzzi, Milan, 1996
  • Pohl J, Bertram B, Hilgard P, D-19575-a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother Pharmacol 1995;35:364-70
  • Pohl J, Hilgard P, Jahn W, Zechel HJ. Experimental toxicology of ASTA Z 7557 (INN mafosfamide). Invest New Drugs 1984;2(2):201-6
  • Pette M, Gold R, Pette DF, Mafosfamide induces DNA fragmentation and apoptosis in human Tlymphocytes. A possible mechanism of its immunosuppressive action. Immunopharmacology 1995;30:59-69
  • Voelcker G, Bielicki L, Hohorst HJ. Thiazolidinyl- and perhydrothiazinylphosphamidesters: toxicity and preliminary antitumour evaluation. J Cancer Res Clin Oncol 1997;123(11-12):623-31
  • Paci A, Guillaume D, Husson HP. Synthesis of side-chain substituted ifosfamide analogs. J Heterocyclic Chem 2001b;38:1131-4
  • Storme T, Deroussent A, Mercier L, New ifosfamide analogs designed for lower associated neurotoxicity and nephrotoxicity with modified alkylating kinetics leading to enhanced in vitro anticancer activity. J Pharmacol Exp Ther 2009;328:598-609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.