173
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity

, &
Pages 1231-1251 | Published online: 14 Jul 2010

Bibliography

  • Cooper DY, Levin S, Narasimhulu S, Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 1965;147:400-2
  • Schenkman JB, Grein H. Cytochrome P450 in handbook of experimental pharmacology. (Volume 105). Springer Verlag, New York, Berlin/London; 1993
  • Gonzalez FJ. Molecular genetics of the P-450 superfamily. Pharmacol Ther 1990;45:1-38
  • Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signaling pathways and environmental carcinogenesis. Nat Rev Cancer 2006;6:947-60
  • Simpson ER, Boyd GS. The cholesterol side-chain cleavage system of bovine adrenal cortex. Eur J Biochem 1967;2:275-85
  • Botham KM, Beckett GJ, Percy-Robb IW, Bile acid synthesis in isolated rat liver cells. The effect of 7 alpha-hydroxycholesterol. Eur J Biochem 1980;103:299-305
  • Danielsson H, Einarsson K, Johansson G. Effect of biliary drainage on individual reactions in the conversion of cholesterol to taurochlic acid. Bile acids and steroids 180. Eur J Biochem 1967;2:44-9
  • Shefer S, Hauser S, Mosbach EH. 7-Alpha-hydroxylation of cholestanol by rat liver microsomes. J Lipid Res 1968;9:328-33
  • Estabrook RW, Cooper DY, Rosenthal O. The light reversible carbon monoxide inhibition of the steroid c21-hydroxylase system of the adrenal cortex. Biochem Z 1963;338:741-55
  • Ohyama Y, Noshiro M, Okuda K. Cloning and expression of cDNA encoding 25-hydroxyvitamin D3 24-hydroxylase. FEBS Lett 1991;278:195-8
  • Su P, Rennert H, Shayiq RM, A cDNA encoding a rat mitochondrial cytochrome P450 catalyzing both the 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3: gonadotropic regulation of the cognate mRNA in ovaries. DNA Cell Biol 1990;9:657-67
  • Usui E, Noshiro M, Okuda K. Molecular cloning of cDNA for vitamin D3 25-hydroxylase from rat liver mitochondria. FEBS Lett 1990;262:135-8
  • Omura T. Mitochondrial P450s. Chem Biol Interact 2006;163:86-93
  • Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biol 2000;1:3003.1-3003.9
  • Sono M, Roach MP, Coulter ED, Heme-containing oxygenases. Chem Rev 1996;96:2841-88
  • Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001;14:611-50
  • Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotechnol 2006;124:128-45
  • Hunter AL, Cruzer RP, Cheyne BM, Cytochrome P-450 enzymes and cardiovascular diseases. Can J Physiol Pharmacol 2004;82:1053-60
  • Ding X, Kaminsky LS. Human extrahepatic metabolism and tissue selective, chemical toxicity in the respiratory and gastrointestinal tracts. Ann Rev Pharmacol Toxicol 2003;43:149-73
  • Ding X, Coon MJ. Immunocytochemical characterization of multiple forms of cytochrome P-450 in rabbit nasal microsomes and evidence for tissue specific expression of P-450s NMa and NMb. Mol Pharmacol 1990;37:489-96
  • Blobel G, Sabatini DD. Ribosome–membrane interaction in eukaryotic cells. Manson LA, editor, Biomembranes. (Volume 2). Plenum, New York; 1971. p. 193-195
  • Blobel G. Protein targeting. Biosci Rep 2000;20:303-44
  • Raza H, Avadhani NG. Hepatic mitochondrial cytochrome P-450 system. Purification and characterization of two distinct forms of mitochondrial cytochrome P-450 from beta-naphthoflavone-induced rat liver. J Biol Chem 1988;263:9533-41
  • Shayiq RM, Addya S, Avadhani NG. Constitutive and inducible forms of cytochrome P450 from hepatic mitochondria. Methods Enzymol 1991;206:587-94
  • Anandatheerthavarada HK, Addya S, Dwivedi RS, Localization of multiple forms of inducible cytochromes P450 in rat liver mitochondria: immunological characteristics and patterns of xenobiotic substrate metabolism. Arch Biochem Biophys 1997;339:136-50
  • Addya S, Anandatheerthavarada HK, Biswas G, Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. J Cell Biol 1997;139:589-99
  • Dasari VR, Anandatheerthavarada HK, Robin MA, Role of protein kinase C-mediated protein phosphorylation in mitochondrial translocation of mouse CYP1A1, which contains a non-canonical targeting signal. J Biol Chem 2006;281:30834-47
  • Anandatheerthavarada HK, Biswas G, Mullick J, Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at ser128. EMBO J 1999;18:5494-504
  • Bhagwat SV, Mullick J, Raza H, Constitutive and inducible cytochromes P450 in rat lung mitochondria: xenobiotic induction, relative abundance, and catalytic properties. Toxicol Appl Pharmacol 1999;156:231-40
  • Boopathi E, Anandatheerthavarada HK, Bhagwat SV, Accumulation of mitochondrial P450MT2, NH(2)-terminal truncated cytochrome P4501A1 in rat brain during chronic treatment with beta-naphthoflavone. A role in the metabolism of neuroactive drugs. J Biol Chem 2000;275:34415-23
  • Anandatheerthavarada HK, Vijayasarathy C, Bhagwat SV, Physiological role of the N-terminal processed P4501A1 targeted to mitochondria in erythromycin metabolism and reversal of erythromycin-mediated inhibition of mitochondrial protein synthesis. J Biol Chem 1999;274:6617-25
  • Robin MA, Anandatheerthavarada HK, Fang JK, Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. J Biol Chem 2001;276:24680-9
  • Dong H, Dalton TP, Miller ML, Knock-in mouse lines expressing either mitochondrial or microsomal CYP1A1: differing responses to dietary benzo[a]pyrene as proof of principle. Mol Pharmacol 2009;75:555-67
  • Genter MB, Clay CD, Dalton TP, Comparison of mouse hepatic mitochondrial versus microsomal cytochromes P450 following TCDD treatment. Biochem Biophys Res Commun 2006;267:558-67
  • Robin MA, Anandatheerthavarada HK, Biswas G, Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 2002;277:40583-93
  • Robin MA, Sauvage I, Grandperret T, Ethanol increases mitochondrial cytochrome P450 2E1 in mouse liver and rat hepatocytes. FEBS Lett 2005;579:6895-902
  • Bai J, Cederbaum AI. Cycloheximide protects HepG2 cells from serum withdrawal-induced apoptosis by decreasing p53 and phosphorylated p53 levels. J Pharmacol Exp Ther 2006;319:1435-43
  • Lieber CS, Cao Q, DeCarli LM, Role of medium-chain triglycerides in the alcohol-mediated cytochrome P450 2E1 induction of mitochondria. Alcohol Clin Exp Res 2007;31:1660-8
  • Moon KH, Hood BL, Kim BJ, Inactivation of oxidized and S-nitrosylated mitochondrial proteins in alcoholic fatty liver of rats. Hepatology 2006;44:1218-30
  • Raza H, Prabu SK, Robin MA, Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes 2004;53:185-194
  • Neve EP, Ingelman-Sundberg M. A soluble NH(2)-terminally truncated catalytically active form of rat cytochrome P450 2E1 targeted to liver mitochondria(1). FEBS Lett 1999;460:309-14
  • Neve EP, Ingelman-Sundberg M. Identification and characterization of a mitochondrial targeting signal in rat cytochrome P450 2E1 (CYP2E1). J Biol Chem 2001;276:11317-22
  • Dutheil F, Dauchy S, Diry M, Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos 2009;37:1528-38
  • Sangar MC, Anandatheerthavarada HK, Tang W, Human liver mitochondrial cytochrome P450 2D6 – individual variations and implications in drug metabolism. FEBS J 2009;276:3440-53
  • Sangar MC, Anandatheerthavarada HK, Martin MV, Identification of genetic variants of human CYP 2D6 with impaired mitochondrial targeting. Mol Genet Metab 2010;99:90-7
  • Bhagwat SV, Boyd MR, Ravindranath V. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Mol Pharmacol 2000;59:573-82
  • Sakaguchi M, Mihara K, Sato R. Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc Natl Acad Sci USA 1984;81:3361-4
  • High S, Dobberstein B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J Cell Biol 1991;113:229-33
  • Oliver J, Jungnickel B, Gorlich D, The Sec61 complex is essential for the insertion of proteins into the membrane of the endoplasmic reticulum. FEBS Lett 1995;362:126-30
  • Bar-Nun S, Kreibich G, Adesnik M, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc Natl Acad Sci USA 1980;77:965-9
  • Monier S, Van LP, Kreibich G, Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol 1988;107:457-70
  • Sakaguchi M, Tomiyoshi R, Kuroiwa T, Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proc Natl Acad Sci USA 1992;89:16-9
  • Szczesna-Skorupa E, Kemper B. Influence of protein–protein interactions on the cellular localization of cytochrome P450. Expert Opin Drug Metab Toxicol 2008;4:123-36
  • Szczesna-Skorupa E, Kemper B. Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 2C1. J Biol Chem 2000;275:19409-15
  • Szczesna-Skorupa E, Kemper B. The juxtamembrane sequence of cytochrome P-450 2C1 contains an endoplasmic reticulum retention signal. J Biol Chem 2001;276:45009-14
  • Szczesna-Skorupa E, Kemper B. BAP31 is involved in the retention of cytochrome P450 2C2 in the endoplasmic reticulum. J Biol Chem 2006;281:4142-8
  • Bolender N, Sickmann A, Wagner R, Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 2008;9:42-9
  • Wickner W, Schekman R. Protein translocation across biological membranes. Science 2005;310:1452-6
  • Neupert W, Herremann JM. Translocation of proteins into mitochondria. Ann Rev Biochem 2007;76:723-49
  • Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol 1988;4:289-333
  • Abe Y, Shodai T, Muto T, Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 2000;100:551-60
  • Anandatheerthavarada HK, Sepuri NB, Avadhani NG. Mitochondrial targeting of cytochrome P450 proteins containing NH2-terminal chimeric signals involves an unusual TOM20/TOM22 bypass mechanism. J Biol Chem 2009;284:17352-63
  • Suzuki H, Kadowaki T, Maeda M, Membrane-embedded C-terminal segment of rat mitochondrial TOM40 constitutes protein-conducting pore with enriched beta-structure. J Biol Chem 2004;279:50619-29
  • Hildenbeutel M, Habib SJ, Herrmann JM, New insights into the mechanism of precursor protein insertion into the mitochondrial membranes. Int Rev Cell Mol Biol 2008;268:147-90
  • Neve EP, Ingelman-Sundberg M. Intracellular transport and localization of microsomal cytochrome P450. Anal Bioanal Chem 2008;392:1075-84
  • Eisenberg D, Schwarz E, Komaromy M, Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 1984;179:125-42
  • Engelman DM, Steitz TA, Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 1986;15:321-53
  • Morohashi K, Yoshioka H, Gotoh O, Molecular cloning and nucleotide sequence of DNA of mitochondrial cytochrome P-450(11 beta) of bovine adrenal cortex. J Biochem 1987;102:559-68
  • Naamati A, Regev-Rudzki N, Galperin S, Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 2009;284:30200-8
  • Bandlow W, Strobel G, Schricker R. Influence of N-terminal sequence variation on the sorting of major adenylate kinase to the mitochondrial intermembrane space in yeast. Biochem J 1998;329(Pt 2):359-67
  • Vongsamphanh R, Fortier PK, Ramotar D. Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability. Mol Cell Biol 2001;21:1647-55
  • Huang LJ, Wang Lin, Ma Y, NH2 terminal targeting motifs direct dual specificity A-kinase anchoring protein 1 (D-AKAP 1) to either mitochondria or endoplasmic reticulum. J Cell Biochem 1999;145:951-9
  • Robin MA, Prabu SK, Raza H, Phosphorylation enhances mitochondrial targeting of GSTA4-4 through increased affinity for binding to cytoplasmic Hsp70. J Biol Chem 2003;278:18960-70
  • Raza H, Robin MA, Fang JK, Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 2002;366:45-55
  • Colombo S, Longhi R, Alcaro S, N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning. J Cell Biol 2005;168:735-45
  • Sepuri NB, Yadav S, Anandatheerthavarada HK, Mitochondrial targeting of intact CYP2B1 and CYP2E1 and N-terminal truncated CYP1A1 proteins in Saccharomyces cerevisiae – role of protein kinase A in the mitochondrial targeting of CYP2E1. FEBS J 2007;274:4615-30
  • Anandatheerthavarada HK, Biswas G, Robin MA. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003;161:41-54
  • Devi L, Prabu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008;283:9089-100
  • Majumder PK, Pandey P, Sun X, Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem 2000;275:21793-6
  • Baines CP, Zhang J, Wang GW, Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 2002;90:390-7
  • Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996;87:629-38
  • Wegrzyn J, Potla R, Chwae YJ, Function of mitochondrial Stat3 in cellular respiration. Science 2009;323:723-4
  • Mootha VK, Bunkenborg J, Olsen JV, Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003;115:629-40
  • Prokisch H, Ahting U. MitoP2, an integrated database for mitochondrial proteins. Methods Mol Biol 2007;372:573-86
  • Prokisch H, Ahting U, Andreoli C. MitoP2: the mitochondrial proteome database – now including mouse data. Nucleic Acids Res 2006;34:D705-11
  • Niranjan BG, Wilson NM, Jefcoate CR, Hepatic mitochondrial cytochrome P-450 system. Distinctive features of cytochrome P-450 involved in the activation of aflatoxin B1 and benzo(a)pyrene. J Biol Chem 1984;259:12495-501
  • Bhagwat SV, Biswas G, Anandatheerthavarada HK, Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 1999;274:24014-22
  • Boopathi E, Srinivasan S, Fang JK, Bimodal protein targeting through activation of cryptic mitochondrial targeting signals by an inducible cytosolic endoprotease. Mol Cell 2008;32:32-42
  • Bird P, Gething MJ, Sambrook J. The functional efficiency of a mammalian signal peptide is directly related to its hydrophobicity. J Biol Chem 1990;265:8420-5
  • Ng DT, Brown JD, Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 1996;134:269-78
  • Sangar MC. PhD Thesis, University of Pennsylvania; 2010
  • Bansal S, Liu CP, Sepuri NB, Mitochondria targeted CYP 2E1 induces oxidative damage and augments alcohol mediated oxidative stress. J Biol Chem 2010; In press. (JBC online, 7 June 2010)
  • Ellis RJ. Molecular chaperones: plugging the transport gap. Nature 2003;421:801-2
  • Ren J, Bharti A, Raina D, MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene 2006;25:20-31
  • Voos W, Rottgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 2002;1592:51-62
  • Voos W. A new connection: chaperones meet a mitochondrial receptor. Mol Cell 2003;11:1-3
  • Guengerich FP. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 2006;8:E101-11
  • Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
  • Tang C, Lin JH, Lu AY. Metabolism-based drug–drug interactions: what determines individual variability in cytochrome P450 induction? Drug Metab Dispos 2005;33:603-13
  • Ferslew KE, Hagardorn AN, Harlan GC, A fatal drug interaction between clozapine and fluoxetine. J Forensic Sci 1998;43:1082-5
  • Kudo K, Imamura T, Jitsufuchi N, Death attributed to the toxic interaction of triazolam, amitriptyline and other psychotropic drugs. Forensic Sci Int 1997;86:35-41
  • Kupiec T, Raj V. Fatal seizures due to potential herb–drug interactions with Ginkgo biloba. J Anal Toxicol 2005;29:755-8
  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998;279:1200-5
  • Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol 2001;41:535-67
  • Anandatheerthavarada HK, Addya S, Mullick J, Avadhani NG. Interaction of adrenodoxin with P4501A1 and its truncated form P450MT2 through different domains: differential modulation of enzyme activities. Biochemistry 1998;37:1150-60
  • Dong MS, Yamazaki H, Guo Z, Recombinant human cytochrome P450 1A2 and an N-terminal-truncated form: construction, purification, aggregation properties, and interactions with flavodoxin, ferredoxin, and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 1996;327:11-9
  • Jenkins CM, Waterman MR. Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities. J Biol Chem 1994;269:27401-8
  • Sakaki T, Kominami S, Hayashi K, Molecular engineering study on electron transfer from NADPH-P450 reductase to rat mitochondrial P450c27 in yeast microsomes. J Biol Chem 1996;271:26209-13
  • Anandatheerthavarada HK, Amuthan G, Biswas G, Evolutionarily divergent electron donor proteins interact with P450MT2 through the same helical domain but different contact points. EMBO J 2001;20:2394-403
  • Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 2005;569:101-10
  • Robin MA, Sauvage I, Grandperret T, Ethanol increases mitochondrial cytochrome P450 2E1 in mouse liver and rat hepatocytes. FEBS Lett 2005;579:6895-902
  • Bradford BU, Kono H, Isayama F, Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology 2005;41:336-44
  • Morgan K, French SW, Morgan TR. Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 2002;36:122-34
  • Butura A, Nilsson K, Morgan K, The impact of CYP2E1 on the development of alcoholic liver disease as studied in a transgenic mouse model. Hepatology 2009;50:572-83
  • Bai J, Cederbaum AI. Overexpression of CYP2E1 in mitochondria sensitizes HepG2 cells to the toxicity caused by depletion of glutathione. J Biol Chem 2006;281:5128-36
  • Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 2004;199:316-31
  • Harrelson WG Jr, Mason RP. Microsomal reduction of gentian violet. Evidence for cytochrome P-450-catalyzed free radical formation. Mol Pharmacol 1982;22:239-42
  • Li Y, Trush MA, Yager JD. DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol. Carcinogenesis 1994;15:1421-7
  • Liehr JG, Roy D. Free radical generation by redox cycling of estrogens. Free Radic Biol Med 1990;8:415-23
  • Bolton JL, Pisha E, Zhang F, Role of quinoids in estrogen carcinogenesis. Chem Res Toxicol 1998;11:1113-27
  • Gorsky LD, Koop DR, Coon MJ. On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J Biol Chem 1984;259:6812-7
  • Kuthan H, Ullrich V. Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur J Biochem 1982;126:583-8
  • Bell LC, Guengerich FP. Oxidation kinetics of ethanol by human cytochrome P450 2E1. Rate-limiting product release accounts for effects of isotopic hydrogen substitution and cytochrome b5 on steady-state kinetics. J Biol Chem 1997;272:29643-51
  • Mari M, Wu D, Nieto N, CYP2E1-dependent toxicity and up-regulation of antioxidant genes. J Biomed Sci 2001;8:52-8
  • Leclercq IA, Farrell GC, Field J, CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 2000;105:1067-75
  • Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997;77:517-44
  • Zima T, Fialova L, Mestek O, Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci 2001;8:59-70
  • Caro AA, Evans KL, Cederbaum AI. CYP2E1 overexpression inhibits microsomal Ca2+ATPase activity in HepG2 cells. Toxicology 2009;255:171-6
  • Cederbaum AI, Wu D, Mari M, CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic Biol Med 2001;31:1539-43
  • Zhuge J, Cederbaum AI. Depletion of S-adenosyl-l-methionine with cycloleucine potentiates cytochrome P450 2E1 toxicity in primary rat hepatocytes. Arch Biochem Biophys 2007;466:177-85
  • Bai J, Cederbaum AI. Adenovirus-mediated expression of CYP2E1 produces liver toxicity in mice. Toxicol Sci 2006;91:365-71
  • Caro AA, Cederbaum AI. Synergistic toxicity of iron and arachidonic acid in HepG2 cells overexpressing CYP2E1. Mol Pharmacol 2001;60:742-52
  • Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 2009;83:519-48
  • Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA 2005;102:18769-70
  • Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005;6:389-402
  • Nardin RA, Johns DR. Mitochondrial dysfunction and neuromuscular disease. Muscle Nerve 2001;24:170-91
  • Diotte NM, Xiong Y, Gao J. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 2009;1793:427-38
  • Larosche I, Letteron P, Fromenty B, Tamoxifen inhibits topoisomerases, depletes mitochondrial DNA, and triggers steatosis in mouse. J Pharmacol Exp Ther 2007;321:526-35
  • Niranjan BG, Bhat NK, Avadhani NG. Preferential attack of mitochondrial DNA by aflatoxin B1 during hepatocarcinogenesis. Science 1982;215:73-5
  • Cao PR, Bernhardt R. Modulation of aldosterone biosynthesis by adrenodoxin mutants with different electron transport efficiencies. Eur J Biochem 1999;265:152-9
  • Scatena R, Bottoni P, Giardina B. Mitochondria, PPARs, and cancer: is receptor-independent action of PPAR agonists a key? PPAR Res 2008;2008:256251

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.