177
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Drug transport by breast cancer resistance protein

, , &
Pages 1363-1384 | Published online: 27 Sep 2010

Bibliography

  • Doyle LA, Yang W, Abruzzo LV, A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95:15665-70
  • van Herwaarden AE, Wagenaar E, Merino G, Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 2007;27:1247-53
  • Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 2007;114:345-58
  • Maliepaard M, Scheffer GL, Faneyte IF, Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001;61:3458-64
  • Fetsch PA, Abati A, Litman T, Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett 2006;235:84-92
  • Solbach TF, Paulus B, Weyand M, ATP-binding cassette transporters in human heart failure. Naunyn Schmiedebergs Arch Pharmacol 2008;377:231-43
  • Solbach TF, Konig J, Fromm MF, Zolk O. ATP-binding cassette transporters in the heart. Trends Cardiovasc Med 2006;16:7-15
  • Meissner K, Heydrich B, Jedlitschky G, The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem 2006;54:215-21
  • Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 2006;46:381-410
  • Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003;22:7340-58
  • Usuda J, Ohira T, Suga Y, Breast cancer resistance protein (BCRP) affected acquired resistance to gefitinib in a “never-smoked” female patient with advanced non-small cell lung cancer. Lung Cancer 2007;58:296-9
  • Galimberti S, Nagy B, Benedetti E, Evaluation of the MDR1, ABCG2, Topoisomerases IIalpha and GSTpi gene expression in patients affected by aggressive mantle cell lymphoma treated by the R-Hyper-CVAD regimen. Leuk Lymphoma 2007;48:1502-9
  • An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol 2009;5:1529-42
  • Jonker JW, Smit JW, Brinkhuis RF, Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000;92:1651-6
  • Kuppens IE, Witteveen EO, Jewell RC, A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 2007;13:3276-85
  • Sparreboom A, Loos WJ, Burger H, Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther 2005;4:650-8
  • Sparreboom A, Gelderblom H, Marsh S, Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 2004;76:38-44
  • Li J, Cusatis G, Brahmer J, Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 2007;6:432-8
  • Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2. Pharmacogenomics 2008;9:1005-9
  • Reid T, Yuen A, Catolico M, Carlson RW. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol 1993;33:82-4
  • Troger U, Stotzel B, Martens-Lobenhoffer J, Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ 2002;324:1497
  • Santucci R, Leveque D, Kemmel V, Severe intoxication with methotrexate possibly associated with concomitant use of proton pump inhibitors. Anticancer Res 2010;30:963-5
  • Breedveld P, Zelcer N, Pluim D, Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 2004;64:5804-11
  • Lagas JS, van der Kruijssen CM, van de WK, Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone. Drug Metab Dispos 2009;37:129-36
  • Thyss A, Milano G, Kubar J, Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet 1986;1:256-8
  • Kruijtzer CM, Beijnen JH, Rosing H, Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 2002;20:2943-50
  • Giacomini KM, Huang SM, Tweedie DJ, Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-36
  • Huang SM, Zhang L, Giacomini KM. The International Transporter Consortium: a collaborative group of scientists from academia, industry, and the FDA. Clin Pharmacol Ther 2010;87:32-6
  • Reyes CL, Chang G. Structure of the ABC transporter MsbA in complex with ADP.vanadate and lipopolysaccharide. Science 2005;308:1028-31
  • Graf GA, Yu L, Li WP, ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 2003;278:48275-82
  • Kage K, Tsukahara S, Sugiyama T, Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002;97:626-30
  • Ni Z, Mark ME, Cai X, Mao Q. Fluorescence resonance energy transfer (FRET) analysis demonstrates dimer/oligomer formation of the human breast cancer resistance protein (BCRP/ABCG2) in intact cells. Int J Biochem Mol Biol 2010;1:1-11
  • Clark R, Kerr ID, Callaghan R. Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter. Br J Pharmacol 2006;149:506-15
  • Ozvegy C, Varadi A, Sarkadi B. Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J Biol Chem 2002;277:47980-90
  • Janvilisri T, Venter H, Shahi S, Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J Biol Chem 2003;278:20645-51
  • Rosenberg MF, Bikadi Z, Chan J, The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure 2010;18:482-93
  • Xu J, Peng H, Chen Q, Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity. Cancer Res 2007;67:4373-81
  • McDevitt CA, Collins RF, Conway M, Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 2006;14:1623-32
  • McDevitt CA, Collins R, Kerr ID, Callaghan R. Purification and structural analyses of ABCG2. Adv Drug Deliv Rev 2009;61:57-65
  • Aller SG, Yu J, Ward A, Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009;323:1718-22
  • Li YF, Polgar O, Okada M, Towards understanding the mechanism of action of the multidrug resistance-linked half-ABC transporter ABCG2: a molecular modeling study. J Mol Graph Model 2007;25:837-51
  • Hazai E, Bikadi Z. Homology modeling of breast cancer resistance protein (ABCG2). J Struct Biol 2008;162:63-74
  • Ejendal KF, Diop NK, Schweiger LC, Hrycyna CA. The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding. Protein Sci 2006;15:1597-607
  • Shukla S, Robey RW, Bates SE, Ambudkar SV. The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2. Biochemistry 2006;45:8940-51
  • Henrich CJ, Robey RW, Bokesch HR, New inhibitors of ABCG2 identified by high-throughput screening. Mol Cancer Ther 2007;6:3271-8
  • Ishikawa T, Kasamatsu S, Hagiwara Y, Expression and functional characterization of human ABC transporter ABCG2 variants in insect cells. Drug Metab Pharmacokinet 2003;18:194-202
  • Mitomo H, Kato R, Ito A, A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J 2003;373:767-74
  • Honjo Y, Hrycyna CA, Yan QW, Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 2001;61:6635-9
  • Wang Y, Tajkhorshid E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc Natl Acad Sci USA 2008;105:9598-603
  • Ravna AW, Sylte I, Sager G. Binding site of ABC transporter homology models confirmed by ABCB1 crystal structure. Theor Biol Med Model 2009;6:20
  • Ravna AW, Sylte I, Sager G. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5). Theor Biol Med Model 2007;4:33
  • Chang C, Ekins S, Bahadduri P, Swaan PW. Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Deliv Rev 2006;58:1431-50
  • Matsson P, Englund G, Ahlin G, A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther 2007;323:19-30
  • Gandhi YA, Morris ME. Structure-activity relationships and quantitative structure-activity relationships for breast cancer resistance protein (ABCG2). AAPS J 2009;11:541-52
  • Nicolle E, Boumendjel A, Macalou S, QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv Drug Deliv Rev 2009;61:34-46
  • Nakagawa H, Saito H, Ikegami Y, Molecular modeling of new camptothecin analogues to circumvent ABCG2-mediated drug resistance in cancer. Cancer Lett 2006;234:81-9
  • Cramer J, Kopp S, Bates SE, Multispecificity of drug transporters: probing inhibitor selectivity for the human drug efflux transporters ABCB1 and ABCG2. ChemMedChem 2007;2:1783-8
  • Pick A, Muller H, Wiese M. Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorg Med Chem 2008;16:8224-36
  • Okabe M, Szakacs G, Reimers MA, Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther 2008;7:3081-91
  • Center for Drug Evaluation and Research. Guidance for Industry, In Vivo Drug Metabolism/Drug Interaction Studies—Study Design, Data Analysis, and Recommendations for Dosing and Labeling 7. Department of Health and Human Services, U.S. Food and Drug Administration; 2006
  • Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 2008;36:2014-23
  • Giri N, Agarwal S, Shaik N, Substrate-dependent breast cancer resistance protein (Bcrp1/Abcg2)-mediated interactions: consideration of multiple binding sites in in vitro assay design. Drug Metab Dispos 2009;37:560-70
  • Ho RH, Choi L, Lee W, Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 2007;17:647-56
  • Lal S, Wong ZW, Sandanaraj E, Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci 2008;99:816-23
  • Yasuda SU, Zhang L, Huang SM. The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther 2008;84:417-23
  • Keskitalo JE, Zolk O, Fromm MF, ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2009;86:197-203
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 2009;10:1617-24
  • Ieiri I, Suwannakul S, Maeda K, SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2007;82:541-7
  • Liang E, Proudfoot J, Yazdanian M. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm Res 2000;17:1168-74
  • van der Heijden J, de Jong MC, Dijkmans BA, Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha. Ann Rheum Dis 2004;63:138-43
  • Urquhart BL, Ware JA, Tirona RG, Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 2008;18:439-48
  • Yamasaki Y, Ieiri I, Kusuhara H, Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther 2008;84:95-103
  • Adkison KK, Vaidya SS, Lee DY, Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci 2010;99:1046-62
  • Hirano M, Maeda K, Matsushima S, Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005;68:800-7
  • Tomlinson B, Hu M, Lee VW, ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010;87:558-62
  • Sai K, Saito Y, Maekawa K, Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 2010;66:95-105
  • Cha PC, Mushiroda T, Zembutsu H, Single nucleotide polymorphism in ABCG2 is associated with irinotecan-induced severe myelosuppression. J Hum Genet 2009;54:572-80
  • Cortez MA, Scrideli CA, Yunes JA, mRNA expression profile of multidrug resistance genes in childhood acute lymphoblastic leukemia. Low expression levels associated with a higher risk of toxic death. Pediatr Blood Cancer 2009;53:996-1004
  • van Erp NP, Eechoute K, van d V, Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 2009;27:4406-12
  • Kolz M, Johnson T, Sanna S, Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009;5:e1000504
  • Dehghan A, Kottgen A, Yang Q, Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953-61
  • Saraiya B, Gounder M, Dutta J, Sequential topoisomerase targeting and analysis of mechanisms of resistance to topotecan in patients with acute myelogenous leukemia. Anticancer Drugs 2008;19:411-20
  • Rudin CM, Liu W, Desai A, Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol 2008;26:1119-27
  • Cusatis G, Gregorc V, Li J, Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 2006;98:1739-42
  • Zhang W, Yu BN, He YJ, Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 2006;373:99-103
  • Uggla B, Stahl E, Wagsater D, BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leuk Res 2005;29:141-6
  • de Jong FA, Marsh S, Mathijssen RH, ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 2004;10:5889-94
  • Marsh S, Paul J, King CR, Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol 2007;25:4528-35
  • Han JY, Lim HS, Yoo YK, Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 2007;110:138-47
  • Kim HS, Sunwoo YE, Ryu JY, The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine. Br J Clin Pharmacol 2007;64:645-54
  • Erdelyi DJ, Kamory E, Zalka A, The role of ABC-transporter gene polymorphisms in chemotherapy induced immunosuppression, a retrospective study in childhood acute lymphoblastic leukaemia. Cell Immunol 2006;244:121-4
  • Marsh S, Somlo G, Li X, Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007;7:362-5
  • Adkison KK, Vaidya SS, Lee DY, The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol 2008;66:233-9
  • Regenthal R, Krueger M, Koeppel C, Preiss R. Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput 1999;15:529-44
  • Zhang S, Yang X, Coburn RA, Morris ME. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol 2005;70:627-39
  • Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res 2004;21:1263-73
  • Ahmed-Belkacem A, Pozza A, Munoz-Martinez F, Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res 2005;65:4852-60
  • Chearwae W, Shukla S, Limtrakul P, Ambudkar SV. Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin. Mol Cancer Ther 2006;5:1995-2006
  • Zhou XF, Yang X, Wang Q, Effects of dihydropyridines and pyridines on multidrug resistance mediated by breast cancer resistance protein: in vitro and in vivo studies. Drug Metab Dispos 2005;33:1220-8
  • Zhang Y, Gupta A, Wang H, BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm Res 2005;22:2023-34
  • Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004;310:334-41
  • Jekerle V, Klinkhammer W, Scollard DA, In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. Int J Cancer 2006;119:414-22
  • Gedeon C, Behravan J, Koren G, Piquette-Miller M. Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta 2006;27:1096-102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.