386
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Quantitative structure–pharmacokinetic relationships

&
Pages 63-77 | Published online: 24 Nov 2010

Bibliography

  • Oprea TI, Matter H. Integrating virtual screening in lead discovery. Curr Opin Chem Biol 2004;8(4):349-58
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;4(8):649-63
  • Karelson M. Molecular descriptors in QSAR/QSPR. John Wiley & Sons, New York; 2000
  • Kier LB, Hall LH. Molecular connectivity in chemistry and drug research. Academic Press, Inc., New York; 1976
  • Mager DE. Quantitative structure-pharmacokinetic/pharmacodynamic relationships. Adv Drug Deliv Rev 2006;58(12-13):1326-56
  • Geladi P, Kowalski BR. Partial least-squares regression – a tutorial. Anal Chim Acta 1986;185:1-17
  • Ripley BD. Pattern recognition and neural networks. Cambridge University Press, Cambridge; 1996
  • Breiman L. Bagging predictors. Mach Learn 1996;24(2):123-40
  • Breiman L. Random forests. Mach Learn 2001;45(1):5-32
  • Sakiyama Y. The use of machine learning and nonlinear statistical tools for ADME prediction. Expert Opin Drug Metab Toxicol 2009;5(2):149-69
  • Vapnik V. The nature of statistical learning theory. Springer, New York; 1995
  • Obrezanova O, Csanyi G, Gola JM, Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 2007;47(5):1847-57
  • Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13(1):21-7
  • Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 2002;42(6):620-43
  • Lipinski CA, Lombardo F, Dominy BW, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23(1-3):3-25
  • Hou T, Wang J. Structure-ADME relationship: still a long way to go? Expert Opin Drug Metab Toxicol 2008;4(6):759-70
  • Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci 1985;74(5):588-9
  • Palm K, Stenberg P, Luthman K, Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 1997;14(5):568-71
  • Grass GM, Sinko PJ. Effect of diverse datasets on the predictive capability of ADME models in drug discovery. Drug Discov Today 2001;6(12):S54-61
  • Hou T, Wang J, Zhang W, ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 2007;47(1):208-18
  • Watari N, Sugiyama Y, Kaneniwa N, Prediction of hepatic first-pass metabolism and plasma levels following intravenous and oral administration of barbiturates in the rabbit based on quantitative structure-pharmacokinetic relationships. J Pharmacokinet Biopharm 1988;16(3):279-301
  • Bermejo M, Merino V, Garrigues TM, Validation of a biophysical drug absorption model by the PATQSAR system. J Pharm Sci 1999;88(4):398-405
  • Linnankoski J, Makela JM, Ranta VP, Computational prediction of oral drug absorption based on absorption rate constants in humans. J Med Chem 2006;49(12):3674-81
  • Deconinck E, Hancock T, Coomans D, Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. J Pharm Biomed Anal 2005;39(1-2):91-103
  • Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model 2007;47(6):2408-15
  • Turner JV, Maddalena DJ, Agatonovic-Kustrin S. Bioavailability prediction based on molecular structure for a diverse series of drugs. Pharm Res 2004;21(1):68-82
  • Jung E, Kim J, Kim M, Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 2007;8:245
  • Ghuman J, Zunszain PA, Petitpas I, Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 2005;353(1):38-52
  • Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 2008;36(7):1385-405
  • van de Waterbeemd H, Smith DA, Jones BC. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 2001;15(3):273-86
  • Toon S, Rowland M. Structure-pharmacokinetic relationships among the barbiturates in the rat. J Pharmacol Exp Ther 1983;225(3):752-63
  • Mager DE, Jusko WJ. Quantitative structure-pharmacokinetic/pharmacodynamic relationships of corticosteroids in man. J Pharm Sci 2002;91(11):2441-51
  • Gleeson MP. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007;50(1):101-12
  • Klopman G, Stefan LR, Saiakhov RD. ADME evaluation. 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci 2002;17(4-5):253-63
  • Gleeson MP. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007;50(1):101-12
  • Wang J, Krudy G, Xie XQ, Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J Chem Inf Model 2006;46(6):2674-83
  • Yap CW, Chen YZ. Quantitative structure-pharmacokinetic relationships for drug distribution properties by using general regression neural network. J Pharm Sci 2005;94(1):153-68
  • Votano JR, Parham M, Hall LM, QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J Med Chem 2006;49(24):7169-81
  • Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 1999;27(11):1350-9
  • Gertz M, Kilford PJ, Houston JB, Drug lipophilicity and microsomal protein concentration as determinants in the prediction of the fraction unbound in microsomal incubations. Drug Metab Dispos 2008;36(3):535-42
  • Austin RP, Barton P, Cockroft SL, The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos 2002;30(12):1497-503
  • Gao H, Yao L, Mathieu HW, In silico modeling of nonspecific binding to human liver microsomes. Drug Metab Dispos 2008;36(10):2130-5
  • Kilford PJ, Gertz M, Houston JB, Hepatocellular binding of drugs: correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos 2008;36(7):1194-7
  • Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci 1979;68(9):1203-5
  • Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 2005;94(6):1259-76
  • Lombardo F, Obach RS, Shalaeva MY, Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem 2002;45(13):2867-76
  • Lombardo F, Obach RS, Shalaeva MY, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem 2004;47(5):1242-50
  • Sui X, Sun J, Li H, Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data. Eur J Med Chem 2009;44(11):4455-60
  • Gleeson MP, Waters NJ, Paine SW, In silico human and rat Vss quantitative structure-activity relationship models. J Med Chem 2006;49(6):1953-63
  • Lombardo F, Obach RS, Dicapua FM, A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J Med Chem 2006;49(7):2262-7
  • Hinderling PH, Schmidlin O, Seydel JK. Quantitative relationships between structure and pharmacokinetics of beta-adrenoceptor blocking agents in man. J Pharmacokinet Biopharm 1984;12(3):263-87
  • Mayer JM, Hall SD, Rowland M. Relationship between lipophilicity and tubular reabsorption for a series of 5-alkyl-5-ethylbarbituric acids in the isolated perfused rat kidney preparation. J Pharm Sci 1988;77(4):359-64
  • Jones HM, Houston JB. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos 2004;32(9):973-82
  • Bursi R, de Gooyer ME, Grootenhuis A, (Q) SAR study on the metabolic stability of steroidal androgens. J Mol Graph Model 2001;19(6):552-6, 607-8
  • Jensen BF, Sorensen MD, Kissmeyer AM, Prediction of in vitro metabolic stability of calcitriol analogs by QSAR. J Comput Aided Mol Des 2003;17(12):849-59
  • Lee PH, Cucurull-Sanchez L, Lu J, Development of in silico models for human liver microsomal stability. J Comput Aided Mol Des 2007;21(12):665-73
  • Sakiyama Y, Yuki H, Moriya T, Predicting human liver microsomal stability with machine learning techniques. J Mol Graph Model 2008;26(6):907-15
  • Chang C, Duignan DB, Johnson KD, The development and validation of a computational model to predict rat liver microsomal clearance. J Pharm Sci 2009;98(8):2857-67
  • Schwaighofer A, Schroeter T, Mika S, A probabilistic approach to classifying metabolic stability. J Chem Inf Model 2008;48(4):785-96
  • Shen M, Xiao Y, Golbraikh A, Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J Med Chem 2003;46(14):3013-20
  • Czodrowski P, Kriegl JM, Scheuerer S, Computational approaches to predict drug metabolism. Expert Opin Drug Metab Toxicol 2009;5(1):15-27
  • de Graaf C, Vermeulen NP, Feenstra KA. Cytochrome p450 in silico: an integrative modeling approach. J Med Chem 2005;48(8):2725-55
  • Wang YH, Li Y, Li YH, Modeling K-m values using electrotopological state: substrates for cytochrome P450 3A4-mediated metabolism. Bioorg Med Chem Lett 2005;15(18):4076-84
  • Chohan KK, Paine SW, Mistry J, A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J Med Chem 2005;48(16):5154-61
  • Gleeson MP, Davis AM, Chohan KK, Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models. J Comput Aided Mol Des 2007;21(10-11):559-73
  • Byvatov E, Baringhaus KH, Schneider G, A virtual screening filter for identification of cytochrome P4502C9 (CYP2C9) inhibitors. QSAR Comb Sci 2007;26(5):618-28
  • Kriegl JM, Arnhold T, Beck B, A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 2005;19(3):189-201
  • Jensen BF, Vind C, Padkjaer SB, In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50(3):501-11
  • Eitrich T, Kless A, Druska C, Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 2007;47(1):92-103
  • O'Brien SE, de Groot MJ. Greater than the sum of its parts: combining models for useful ADMET prediction. J Med Chem 2005;48(4):1287-91
  • Hudelson MG, Ketkar NS, Holder LB, High confidence predictions of drug-drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods. J Med Chem 2008;51(3):648-54
  • Terfloth L, Bienfait B, Gasteiger J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 2007;47(4):1688-701
  • Ekins S, Bravi G, Binkley S, Three- and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab Dispos 2000;28(8):994-1002
  • Ekins S, Bravi G, Binkley S, Three and four dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. Pharmacogenetics 1999;9(4):477-89
  • Ekins S, Bravi G, Wikel JH, Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 1999;291(1):424-33
  • Ekins S, Bravi G, Binkley S, Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmacol Exp Ther 1999;290(1):429-38
  • Ekins S, Bravi G, Ring BJ, Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6. J Pharmacol Exp Ther 1999;288(1):21-9
  • Afzelius L, Zamora I, Masimirembwa CM, Conformer- and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. J Med Chem 2004;47(4):907-14
  • Afzelius L, Raubacher F, Karlen A, Structural analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modeling techniques. Drug Metab Dispos 2004;32(11):1218-29
  • Sun H, Scott DO. Structure-based drug metabolism predictions for drug design. Chem Biol Drug Des 2010;75(1):3-17
  • Bazeley PS, Prithivi S, Struble CA, Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling. J Chem Inf Model 2006;46(6):2698-708
  • Xu C, Barchet TM, Mager DE. Quantitative structure-property relationships of camptothecins in humans. Cancer Chemother Pharmacol 2009;65(2):325-33
  • Yap CW, Li ZR, Chen YZ. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Model 2006;24(5):383-95
  • Dedrick R, Bischoff KB, Zaharko DS. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother Rep 1970;54(2):95-101
  • Wajima T, Yano Y, Fukumura K, Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. J Pharm Sci 2004;93(7):1890-900
  • Winkler DA. Neural networks as robust tools in drug lead discovery and development. Mol Biotechnol 2004;27(2):139-68
  • Veng-Pedersen P, Modi NB. Application of neural networks to pharmacodynamics. J Pharm Sci 1993;82(9):918-26
  • Gobburu JV, Chen EP. Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis. J Pharm Sci 1996;85(5):505-10
  • Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 1999;186(2):119-25
  • Jamei M, Marciniak S, Feng K, The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol 2009;5(2):211-23
  • Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 2001;50(Suppl 1):S41-67
  • Willmann S, Schmitt W, Keldenich J, A physiological model for the estimation of the fraction dose absorbed in humans. J Med Chem 2004;47(16):4022-31
  • Usansky HH, Sinko PJ. Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for k(a) and F(a). J Pharmacol Exp Ther 2005;314(1):391-9
  • Fliszar KA, Hill BT, Foster N. Predicting human drug pharmacokinetics from in vitro permeability using an absorption-disposition model. J Pharm Sci 2007;96(8):2161-70
  • Peters SA. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 2008;47(4):261-75
  • Blakey GE, Nestorov IA, Arundel PA, Quantitative structure-pharmacokinetics relationships: I. Development of a whole-body physiologically based model to characterize changes in pharmacokinetics across a homologous series of barbiturates in the rat. J Pharmacokinet Biopharm 1997;25(3):277-312
  • Nestorov I, Aarons L, Rowland M. Quantitative structure-pharmacokinetics relationships: II. A mechanistically based model to evaluate the relationship between tissue distribution parameters and compound lipophilicity. J Pharmacokinet Biopharm 1998;26(5):521-45
  • Kamgang E, Peyret T, Krishnan K. An integrated QSPR-PBPK modelling approach for in vitro-in vivo extrapolation of pharmacokinetics in rats. SAR QSAR Environ Res 2008;19(7-8):669-80
  • Poulin P, Theil FP. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 2000;89(1):16-35
  • Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci 2001;90(4):436-47
  • Luttringer O, Theil FP, Poulin P, Physiologically based pharmacokinetic (PBPK) modeling of disposition of epiroprim in humans. J Pharm Sci 2003;92(10):1990-2007
  • Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 2002;91(5):1358-70
  • Jones HM, Parrott N, Jorga K, A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 2006;45(5):511-42
  • Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 2006;95(6):1238-57
  • Poulin P, Theil FP. Development of a novel method for predicting human volume of distribution at steady-state of basic drugs and comparative assessment with existing methods. J Pharm Sci 2009;98(12):4941-61
  • Berezhkovskiy LM. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 2004;93(6):1628-40
  • Fenneteau F, Poulin P, Nekka F. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. J Pharm Sci 2010;99(1):486-514
  • Almond LM, Yang J, Jamei M, Towards a quantitative framework for the prediction of DDIs arising from cytochrome P450 induction. Curr Drug Metab 2009;10(4):420-32
  • Johnson TN, Boussery K, Rowland-Yeo K, A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet 2010;49(3):189-206
  • Johnson TN, Thomson M. Intestinal metabolism and transport of drugs in children: the effects of age and disease. J Pediatr Gastroenterol Nutr 2008;47(1):3-10
  • Watanabe T, Kusuhara H, Maeda K, Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 2009;328(2):652-62
  • Park S, Kim SH, Ropella GE, Tracing multiscale mechanisms of drug disposition in normal and diseased livers. J Pharmacol Exp Ther 2010;334(1):124-36
  • Yan L, Sheihk-Bahaei S, Park S, Predictions of hepatic disposition properties using a mechanistically realistic, physiologically based model. Drug Metab Dispos 2008;36(4):759-68
  • Walker JR, Brown K, Rohatagi S, Quantitative structure-property relationships modeling to predict in vitro and in vivo binding of drugs to the bile sequestrant, colesevelam (Welchol). J Clin Pharmacol 2009;49(10):1185-95
  • Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 2008;84(5):548-58
  • Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 2001;28(6):507-32
  • Urva SR, Yang VC, Balthasar JP. Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 2010;99(3):1582-600
  • Balogh L, Nigavekar SS, Nair BM, Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 2007;3(4):281-96
  • Nigavekar SS, Sung LY, Llanes M, 3H dendrimer nanoparticle organ/tumor distribution. Pharm Res 2004;21(3):476-83
  • Mager DE, Pyszczynski NA, Jusko WJ. Integrated QSPR–pharmacodynamic model of genomic effects of several corticosteroids. J Pharm Sci 2003;92(4):881-9
  • Arrell DK, Terzic A. Network systems biology for drug discovery. Clin Pharmacol Ther 2010;88(1):120-5
  • Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics 2009;25(19):2466-72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.