649
Views
40
CrossRef citations to date
0
Altmetric
Reviews

The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins

, , &
Pages 49-62 | Published online: 23 Nov 2010

Bibliography

  • Hu M, Mak VWL, Chu TTY, Pharmacogenetics of HMG-CoA reductase inhibitors: optimizing the prevention of coronary heart disease. Curr Pharmacogenomics Personalized Med 2009;7:1-26
  • Kajinami K, Takekoshi N, Brousseau ME, Schaefer EJ. Pharmacogenetics of HMG-CoA reductase inhibitors: exploring the potential for genotype-based individualization of coronary heart disease management. Atherosclerosis 2004;177:219-34
  • Schmitz G, Schmitz-Madry A, Ugocsai P. Pharmacogenetics and pharmacogenomics of cholesterol-lowering therapy. Curr Opin Lipidol 2007;18:164-73
  • Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 2010;87:130-3
  • Rodrigues AC. Efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2010;6:621-32
  • Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 2009;5:703-29
  • Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006;112:71-105
  • Gottesman MM, Ambudkar SV. Overview: ABC transporters and human disease. J Bioenerg Biomembr 2001;33:453-8
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009;3:281-90
  • Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2. Pharmacogenomics 2008;9:1005-9
  • Doyle LA, Yang W, Abruzzo LV, A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95:15665-70
  • Allikmets R, Schriml LM, Hutchinson A, A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998;58:5337-9
  • Miyake K, Mickley L, Litman T, Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 1999;59:8-13
  • Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 2001;1520:234-41
  • Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. Aaps J 2005;7:E118-33
  • Krishnamurthy P, Ross DD, Nakanishi T, The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004;279:24218-25
  • Ee PL, Kamalakaran S, Tonetti D, Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 2004;64:1247-51
  • Wang H, Lee EW, Zhou L, Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol Pharmacol 2008;73:845-54
  • Tan KP, Wang B, Yang M, Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol 2010;78:175-85
  • Szatmari I, Vamosi G, Brazda P, Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem 2006;281:23812-23
  • Evseenko DA, Paxton JW, Keelan JA. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab Dispos 2007;35:595-601
  • Yin L, Castagnino P, Assoian RK. ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition. Cancer Res 2008;68:800-7
  • Knutsen T, Rao VK, Ried T, Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer 2000;27:110-16
  • To KK, Robey RW, Knutsen T, Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther 2009;8:2959-68
  • To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 2008;28:5147-61
  • Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009;75:1374-9
  • Liao R, Sun J, Zhang L, MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 2008;104:805-17
  • Hegedus C, Szakacs G, Homolya L, Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv Drug Deliv Rev 2009;61:47-56
  • Storch CH, Ehehalt R, Haefeli WE, Weiss J. Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther 2007;323:257-64
  • Telbisz A, Muller M, Ozvegy-Laczka C, Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta 2007;1768:2698-713
  • Rodrigues AC, Hirata MH, Hirata RD. Impact of cholesterol on ABC and SLC transporters expression and function and its role in disposition variability to lipid-lowering drugs. Pharmacogenomics 2009;10:1007-16
  • Maliepaard M, Scheffer GL, Faneyte IF, Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001;61:3458-64
  • Fetsch PA, Abati A, Litman T, Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett 2006;235:84-92
  • Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 2008;4:1-15
  • Robey RW, To KK, Polgar O, ABCG2: a perspective. Adv Drug Deliv Rev 2009;61:3-13
  • Gutmann H, Hruz P, Zimmermann C, Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol 2005;70:695-9
  • Taipalensuu J, Tornblom H, Lindberg G, Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 2001;299:164-70
  • Merino G, van Herwaarden AE, Wagenaar E, Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 2005;67:1765-71
  • Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 2002;13:2059-63
  • Hori S, Ohtsuki S, Tachikawa M, Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 2004;90:526-36
  • Bleau AM, Huse JT, Holland EC. The ABCG2 resistance network of glioblastoma. Cell Cycle 2009;8:2936-44
  • Xiong H, Callaghan D, Jones A, ABCG2 is upregulated in Alzheimer's brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci 2009;29:5463-75
  • Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010;34:1366-79
  • Robey RW, Honjo Y, van de Laar A, A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta 2001;1512:171-82
  • Allen JD, van Loevezijn A, Lakhai JM, Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 2002;1:417-25
  • Robey RW, Steadman K, Polgar O, Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 2004;64:1242-6
  • Robey RW, Shukla S, Steadman K, Inhibition of ABCG2-mediated transport by protein kinase inhibitors with a bisindolylmaleimide or indolocarbazole structure. Mol Cancer Ther 2007;6:1877-85
  • Ozvegy-Laczka C, Hegedus T, Varady G, High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 2004;65:1485-95
  • Dohse M, Scharenberg C, Shukla S, Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos 2010;38:1371-80
  • Weiss J, Sauer A, Divac N, Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos 2010;31:150-61
  • Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos 2007;35:268-74
  • Wang M. Extending the good diet, good health paradigm: modulation of breast cancer resistance protein (BCRP) by flavonoids. Toxicol Sci 2007;96:203-5
  • Deng JW, Shon JH, Shin HJ, Effect of silymarin supplement on the pharmacokinetics of rosuvastatin. Pharm Res 2008;25:1807-14
  • Tamura A, Onishi Y, An R, In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab Pharmacokinet 2007;22:428-40
  • Honjo Y, Morisaki K, Huff LM, Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 2002;1:696-702
  • Zamber CP, Lamba JK, Yasuda K, Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 2003;13:19-28
  • Imai Y, Nakane M, Kage K, C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002;1:611-16
  • Tamura A, Watanabe M, Saito H, Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 2006;70:287-96
  • Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced ATPase activity in multidrug transporter ABCG2. Int J Cancer 2004;109:238-46
  • Morisaki K, Robey RW, Ozvegy-Laczka C, Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 2005;56:161-72
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 2009;10:1617-24
  • Keskitalo JE, Zolk O, Fromm MF, ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2009;86:197-203
  • Tomlinson B, Hu M, Lee VW, ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010;87:558-62
  • Hu M, Lui SS, Mak VW, Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients. Pharmacogenet Genomics 2010;20:634-7
  • Bailey KM, Romaine SP, Jackson BM, Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 2010;3:276-85
  • Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006;112:457-73
  • Kondo C, Suzuki H, Itoda M, Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2004;21:1895-903
  • Hirano M, Maeda K, Matsushima S, Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005;68:800-7
  • Matsushima S, Maeda K, Kondo C, Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005;314:1059-67
  • Huang L, Wang Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 2006;34:738-42
  • Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 2008;36:2014-23
  • Kim RB, Wandel C, Leake B, Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999;16:408-14
  • Hochman JH, Pudvah N, Qiu J, Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res 2004;21:1686-91
  • Bogman K, Peyer AK, Torok M, HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol 2001;132:1183-92
  • Yamasaki D, Nakamura T, Okamura N, Effects of acid and lactone forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on the induction of MDR1 expression and function in LS180 cells. Eur J Pharm Sci 2009;37:126-32
  • Yamazaki M, Akiyama S, Ni'inuma K, Biliary excretion of pravastatin in rats: contribution of the excretion pathway mediated by canalicular multispecific organic anion transporter. Drug Metab Dispos 1997;25:1123-9
  • Zhang W, Yu BN, He YJ, Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 2006;373:99-103
  • Ho RH, Choi L, Lee W, Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 2007;17:647-56
  • Ieiri I, Suwannakul S, Maeda K, SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2007;82:541-7
  • Lee E, Ryan S, Birmingham B, Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 2005;78:330-41
  • Rosenson RS. Rosuvastatin: a new inhibitor of HMG-coA reductase for the treatment of dyslipidemia. Expert Rev Cardiovasc Ther 2003;1:495-505
  • Roberts WC. The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am J Cardiol 1997;80:106-7
  • Nicholls SJ, Brandrup-Wognsen G, Palmer M, Barter PJ. Meta-analysis of comparative efficacy of increasing dose of atorvastatin versus rosuvastatin versus simvastatin on lowering levels of atherogenic lipids (from VOYAGER). Am J Cardiol 2010;105:69-76
  • Chasman DI, Posada D, Subrahmanyan L, Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004;291:2821-7
  • Krauss RM, Mangravite LM, Smith JD, Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation 2008;117:1537-44
  • Zintzaras E, Kitsios GD, Triposkiadis F, APOE gene polymorphisms and response to statin therapy. Pharmacogenomics J 2009;9:248-57
  • Dehghan A, Kottgen A, Yang Q, Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953-61
  • Wang B, Miao Z, Liu S, Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet 2010;127:245-6
  • Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008;359:1811-21
  • Kathiresan S, Voight BF, Purcell S, Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009;41:334-41
  • Samani NJ, Erdmann J, Hall AS, Genomewide association analysis of coronary artery disease. N Engl J Med 2007;357:443-53
  • Milionis HJ, Kakafika AI, Tsouli SG, Effects of statin treatment on uric acid homeostasis in patients with primary hyperlipidemia. Am Heart J 2004;148:635-40
  • Ogata N, Fujimori S, Oka Y, Kaneko K. Effects of three strong statins (atorvastatin, pitavastatin, and rosuvastatin) on serum uric acid levels in dyslipidemic patients. Nucleosides Nucleotides Nucleic Acids 2010;29:321-4
  • Zhou XF, Yang X, Wang Q, Effects of dihydropyridines and pyridines on multidrug resistance mediated by breast cancer resistance protein: in vitro and in vivo studies. Drug Metab Dispos 2005;33:1220-8
  • Baigent C, Keech A, Kearney PM, Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005;366:1267-78
  • Howard BV, Roman MJ, Devereux RB, Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes: the SANDS randomized trial. JAMA 2008;299:1678-89
  • Lewington S, Whitlock G, Clarke R, Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007;370:1829-39
  • Martin PD, Dane AL, Nwose OM, No effect of age or gender on the pharmacokinetics of rosuvastatin: a new HMG-CoA reductase inhibitor. J Clin Pharmacol 2002;42:1116-21
  • Lahera V, Goicoechea M, de Vinuesa SG, Endothelial dysfunction, oxidative stress and inflammation in atherosclerosis: beneficial effects of statins. Curr Med Chem 2007;14:243-8
  • Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis 2009;203:325-30
  • Fujino H, Saito T, Ogawa S, Kojima J. Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol 2005;57:1305-11
  • Keskitalo JE, Kurkinen KJ, Neuvonen M, No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 2009;68:207-13
  • Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008;84:457-61
  • Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 2006;80:356-66
  • Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007;82:726-33
  • Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006;16:873-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.