522
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Novel therapy in Parkinson's disease: adenosine A2A receptor antagonists

, & (Professor, Director)
Pages 441-455 | Published online: 19 Feb 2011

Bibliography

  • Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease. N Engl J Med 2003;348(14):1356-64
  • Weintraub D, Comella CL, Horn S. Parkinson's disease – Part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 2008;14(2 Suppl):S40-48
  • Hoehn MM. The natural history of Parkinson's disease in the pre-levodopa and post-levodopa eras. Neurol Clin 1992;10(2):331-9
  • Forno LS. Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 1969;17(6):557-75
  • Braak H, Del Tredici K, Bratzke H, Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol 2002;249(Suppl 3): III/1-5
  • Braak H, Del Tredici K, Rub U, Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003;24(2):197-211
  • Antal A, Bandini F, Keri S, Visuo-cognitive dysfunctions in Parkinson's disease. Clin Neurosci 1998;5(2):147-52
  • Antal A, Dibo G, Keri S, P300 component of visual event-related potentials distinguishes patients with idiopathic parkinson's disease from patients with essential tremor. J Neural Transm 2000;107(7):787-97
  • Antal A, Keri S, Dibo G, Electrophysiological correlates of visual categorization: evidence for cognitive dysfunctions in early Parkinson's disease. Brain Res Cogn Brain Res 2002;13(2):153-8
  • Antal A, Keri S, Kincses T, Corticostriatal circuitry mediates fast-track visual categorization. Brain Res Cogn Brain Res 2002;13(1):53-9
  • Antal A, Keri S, Kincses ZT, Dopaminergic contributions to the visual categorization of natural scenes: evidence from Parkinson's disease. J Neural Transm 2003;110(7):757-70
  • Kincses ZT. Cortico-striatal circuitry in visual perception. Ideggyogy Sz 2008;61(7-8):280-1
  • Kincses ZT, Vecsei L. Pharmacological therapy in Parkinson's disease: focus on neuroprotection. CNS Neurosci Ther 2010; In press
  • Newman EJ, Grosset KA, Grosset DG. Geographical difference in Parkinson's disease prevalence within West Scotland. Mov Disord 2009;24(3):401-6
  • Zorzon M, Capus L, Pellegrino A, Familial and environmental risk factors in Parkinson's disease: a case-control study in north-east Italy. Acta Neurol Scand 2002;105(2):77-82
  • Gorell JM, Johnson CC, Rybicki BA, The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998;50(5):1346-50
  • Gorell JM, Peterson EL, Rybicki BA, Multiple risk factors for Parkinson's disease. J Neurol Sci 2004;217(2):169-74
  • Klivenyi P, Vecsei L. The use of Stalevo in hungary for patients with Parkinson disease and its effect on the quality of life. Ideggyogy Sz 2008;61(1-2):42-8
  • Klivenyi P, Vecsei L. Long term experience with Stalevo in Szeged, Hungary. Ideggyogy Sz 2009;62(5-6):178-80
  • Lyons KE, Pahwa R. Conversion from sustained release carbidopa/levodopa to carbidopa/levodopa/entacapone (stalevo) in Parkinson disease patients. Clin Neuropharmacol 2006;29(2):73-6
  • Myllyla V, Haapaniemi T, Kaakkola S, Patient satisfaction with switching to Stalevo: an open-label evaluation in PD patients experiencing wearing-off (Simcom Study). Acta Neurol Scand 2006;114(3):181-6
  • Yamada H, Aimi Y, Nagatsu I, Immunohistochemical detection of L-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci Res 2007;59(1):1-7
  • Huot P, Parent A. Dopaminergic neurons intrinsic to the striatum. J Neurochem 2007;101(6):1441-7
  • Kitahama K, Geffard M, Araneda S, Localization of L-DOPA uptake and decarboxylating neuronal structures in the cat brain using dopamine immunohistochemistry. Brain Res 2007;1167:56-70
  • LaVoie MJ, Hastings TG. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J Neurochem 1999;73(6):2546-54
  • LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 1999;19(4):1484-91
  • Hastings TG. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 1995;64(2):919-24
  • Group TPS. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287(13):1653-61
  • Whone AL, Watts RL, Stoessl AJ, Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003;54(1):93-101
  • Fahn S. Does levodopa slow or hasten the rate of progression of Parkinson's disease? J Neurol 2005;252(Suppl 4):IV37-42
  • Holloway RG, Shoulson I, Fahn S, Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol 2004;61(7):1044-53
  • Muralikrishnan D, Mohanakumar KP. Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 1998;12(10):905-12
  • Kondo T, Ito T, Sugita Y. Bromocriptine scavenges methamphetamine-induced hydroxyl radicals and attenuates dopamine depletion in mouse striatum. Ann N Y Acad Sci 1994;738:222-9
  • Ogawa N, Tanaka K, Asanuma M, Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicals in vitro. Brain Res 1994;657(1-2):207-13
  • Nishibayashi S, Asanuma M, Kohno M, Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 1996;67(5):2208-11
  • Finotti N, Castagna L, Moretti A, Reduction of lipid peroxidation in different rat brain areas after cabergoline treatment. Pharmacol Res 2000;42(4):287-91
  • Yoshioka M, Tanaka K, Miyazaki I, The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals. Neurosci Res 2002;43(3):259-67
  • Gomez-Vargas M, Nishibayashi-Asanuma S, Asanuma M, Pergolide scavenges both hydroxyl and nitric oxide free radicals in vitro and inhibits lipid peroxidation in different regions of the rat brain. Brain Res 1998;790(1-2):202-8
  • Kitamura Y, Kohno Y, Nakazawa M, Inhibitory effects of talipexole and pramipexole on MPTP-induced dopamine reduction in the striatum of C57BL/6N mice. Jpn J Pharmacol 1997;74(1):51-7
  • Vu TQ, Ling ZD, Ma SY, Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine. J Neural Transm 2000;107(2):159-76
  • Kitamura Y, Kakimura J, Taniguchi T. Protective effect of talipexole on MPTP-treated planarian, a unique parkinsonian worm model. Jpn J Pharmacol 1998;78(1):23-9
  • Kitamura Y, Kosaka T, Kakimura JI, Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 1998;54(6):1046-54
  • Iravani MM, Haddon CO, Cooper JM, Pramipexole protects against MPTP toxicity in non-human primates. J Neurochem 2006;96(5):1315-21
  • Group PS. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287(13):1653-61
  • Du F, Li R, Huang Y, Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 2005;22(10):2422-30
  • Spina MB, Squinto SP, Miller J, Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem 1992;59(1):99-106
  • Akao Y, Maruyama W, Yi H, An anti-Parkinson's disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 2002;326(2):105-8
  • Akao Y, Maruyama W, Shimizu S, Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 2002;82(4):913-23
  • Weinreb O, Bar-Am O, Amit T, Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 2004;18(12):1471-3
  • Weinreb O, Amit T, Bar-Am O, Induction of neurotrophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: new insights and implications for therapy. Ann N Y Acad Sci 2007;1122:155-68
  • Sagi Y, Mandel S, Amit T, Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 2007;25(1):35-44
  • Group TPS. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group. N Engl J Med 1993;328(3):176-83
  • Przuntek H, Conrad B, Dichgans J, SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol 1999;6(2):141-50
  • Olanow CW, Hauser RA, Gauger L, The effect of deprenyl and levodopa on the progression of Parkinson's disease. Ann Neurol 1995;38(5):771-7
  • Group TPS. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 2004;61(4):561-6
  • Olanow CW, Rascol O, Hauser R, A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med 2009;361(13):1268-78
  • Hauser RA, Koller WC, Hubble JP, Time course of loss of clinical benefit following withdrawal of levodopa/carbidopa and bromocriptine in early Parkinson's disease. Mov Disord 2000;15(3):485-9
  • Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 2001;4(12):1224-9
  • Galarraga E, Hernandez-Lopez S, Reyes A, Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 1999;19(9):3629-38
  • Quack G, Hesselink M, Danysz W, Microdialysis studies with amantadine and memantine on pharmacokinetics and effects on dopamine turnover. J Neural Transm Suppl 1995;46:97-105
  • Takahashi T, Yamashita H, Zhang YX, Inhibitory effect of MK-801 on amantadine-induced dopamine release in the rat striatum. Brain Res Bull 1996;41(6):363-7
  • Page G, Peeters M, Maloteaux JM, Increased dopamine uptake in striatal synaptosomes after treatment of rats with amantadine. Eur J Pharmacol 2000;403(1-2):75-80
  • Kornhuber J, Weller M, Schoppmeyer K, Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994;43:91-104
  • Elahi B, Sun X, Chen R. Effects of NMDA receptor antagonist on levodopa induced dyskinesia - Meta analysis of controlled clinical trials. Movement Disord 2009;24:S263
  • Muller CE, Ferre S. Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS Drug Discov 2007;2(1):1-21
  • Yu L, Shen HY, Coelho JE, Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 2008;63(3):338-46
  • Jarvis MF, Williams M. Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS 21680. Eur J Pharmacol 1989;168(2):243-6
  • Parkinson FE, Fredholm BB. Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn Schmiedebergs Arch Pharmacol 1990;342(1):85-9
  • Wan W, Sutherland GR, Geiger JD. Binding of the adenosine A2 receptor ligand [3H]CGS 21680 to human and rat brain: evidence for multiple affinity sites. J Neurochem 1990;55(5):1763-71
  • Martinez-Mir MI, Probst A, Palacios JM. Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease. Neuroscience 1991;42(3):697-706
  • Svenningsson P, Hall H, Sedvall G, Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27(4):322-35
  • DeMet EM, Chicz-DeMet A. Localization of adenosine A2A-receptors in rat brain with [3H]ZM-241385. Naunyn Schmiedebergs Arch Pharmacol 2002;366(5):478-81
  • Fink JS, Weaver DR, Rivkees SA, Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 1992;14(3):186-95
  • Svenningsson P, Le Moine C, Kull B, Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 1997;80(4):1171-85
  • Schiffmann SN, Vanderhaeghen JJ. Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J Neurosci 1993;13(3):1080-7
  • Augood SJ, Emson PC. Adenosine A2a receptor mRNA is expressed by enkephalin cells but not by somatostatin cells in rat striatum: a co-expression study. Brain Res Mol Brain Res 1994;22(1-4):204-10
  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 1991;57(3):1062-7
  • Rosin DL, Hettinger BD, Lee A, Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 2003;61(11 Suppl 6):S12-18
  • Hettinger BD, Lee A, Linden J, Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 2001;431(3):331-46
  • Ferre S, Karcz-Kubicha M, Hope BT, Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 2002;99(18):11940-5
  • Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A(2A) and metabotropic glutamate mGlu(5) receptors increase their efficacy in reversing parkinsonian deficits in rats. Neuropsychopharmacol 2004;29(8):1451-61
  • Diaz-Cabiale Z, Vivo M, Del Arco A, Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 2002;324(2):154-8
  • Ferre S, von Euler G, Johansson B, Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 1991;88(16):7238-41
  • Kull B, Ferre S, Arslan G, Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochem Pharmacol 1999;58(6):1035-45
  • Hillion J, Canals M, Torvinen M, Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 2002;277(20):18091-7
  • Ferre S, Fredholm BB, Morelli M, Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends in Neurosciences 1997;20(10):482-7
  • Hettinger BD, Lee A, Linden J, Ultrastructural localization of adenosine A(2A) receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 2001;431(3):331-46
  • Kurokawa M, Kirk IP, Kirkpatrick KA, Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. Br J Pharmacol 1994;113(1):43-8
  • Kirk IP, Richardson PJ. Adenosine A2a receptor-mediated modulation of striatal [3H]GABA and [3H]acetylcholine release. J Neurochem 1994;62(3):960-6
  • Mori A, Shindou T, Ichimura M, The role of adenosine A2a receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons. J Neurosci 1996;16(2):605-11
  • Mori A, Shindou T. Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists. Neurology 2003;61(11 Suppl 6):S44-8
  • Schiffmann SN, Dassesse D, d'Alcantara P, A2A receptor and striatal cellular functions: regulation of gene expression, currents, and synaptic transmission. Neurology 2003;61(11 Suppl 6):S24-9
  • Shindou T, Mori A, Kase H, Adenosine A(2A) receptor enhances GABA(A)-mediated IPSCs in the rat globus pallidus. J Physiol-London 2001;532(2):423-34
  • Mayfield RD, Suzuki F, Zahniser NR. Adenosine A2a receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem 1993;60(6):2334-7
  • Ochi M, Koga K, Kurokawa M, Systemic administration of adenosine A(2A) receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience 2000;100(1):53-62
  • Querejeta E, Martinez-Romero B, Miranda JEG, Modulation of the striato-pallidal pathway by adenosine A2a receptors depends on dopaminergic striatal input. Brain Res 2010;1349: 137-42
  • Popoli P, Betto P, Reggio R, Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 1995;287(2):215-17
  • Corsi C, Melani A, Bianchi L, Striatal A2A adenosine receptors differentially regulate spontaneous and K+-evoked glutamate release in vivo in young and aged rats. Neuroreport 1999;10(4):687-91
  • Nemeth H, Toldi J, Vecsei L. Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm Suppl 2006;(70):285-304
  • Sas K, Robotka H, Toldi J, Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 2007;257(1-2):221-39
  • Vamos E, Pardutz A, Klivenyi P, The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 2009;283(1-2):21-7
  • Zadori D, Klivenyi P, Vamos E, Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 2009;116(11):1403-9
  • Corsi C, Melani A, Bianchi L, Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. Neuroreport 2000;11(11):2591-5
  • Pintor A, Quarta D, Pezzola A, SCH 58261 (an adenosine A(2A) receptor antagonist) reduces, only at low doses, K(+)-evoked glutamate release in the striatum. Eur J Pharmacol 2001;421(3):177-80
  • Popoli P, Frank C, Tebano MT, Modulation of glutamate release and excitotoxicity by adenosine A2A receptors. Neurology 2003;61(11 Suppl 6):S69-71
  • Popoli P, Pintor A, Domenici MR, Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 2002;22(5):1967-75
  • Tebano MT, Pintor A, Frank C, Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J Neurosci Res 2004;77(1):100-7
  • Corsi C, Pinna A, Gianfriddo M, Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. Eur J Pharmacol 2003;464(1):33-8
  • Choksi NY, Hussain A, Booth RG. 2-Phenylaminoadenosine stimulates dopamine synthesis in rat forebrain in vitro and in vivo via adenosine A2 receptors. Brain Res 1997;761(1):151-5
  • Zetterstrom T, Fillenz M. Adenosine agonists can both inhibit and enhance in vivo striatal dopamine release. Eur J Pharmacol 1990;180(1):137-43
  • Chowdhury M, Fillenz M. Presynaptic adenosine A2 and N-methyl-D-aspartate receptors regulate dopamine synthesis in rat striatal synaptosomes. J Neurochem 1991;56(5):1783-8
  • Okada M, Mizuno K, Kaneko S. Adenosine A1 and A2 receptors modulate extracellular dopamine levels in rat striatum. Neurosci Lett 1996;212(1):53-6
  • Golembiowska K, Dziubina A. Effect of the adenosine A2A receptor antagonist 8-(3-chlorostyryl)caffeine on L-DOPA biotransformation in rat striatum. Brain Res 2004;998(2):208-17
  • Svenningsson P, Nomikos GG, Ongini E, Antagonism of adenosine A2A receptors underlies the behavioural activating effect of caffeine and is associated with reduced expression of messenger RNA for NGFI-A and NGFI-B in caudate-putamen and nucleus accumbens. Neuroscience 1997;79(3):753-64
  • Popoli P, Reggio R, Pezzola A, Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. Neurosci Lett 1998;251(3):201-4
  • Halldner L, Lozza G, Lindstrom K, Lack of tolerance to motor stimulant effects of a selective adenosine A(2A) receptor antagonist. Eur J Pharmacol 2000;406(3):345-54
  • Fuxe K, Ungerstedt U. Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. Med Biol 1974;52(1):48-54
  • Fenu S, Pinna A, Ongini E, Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 1997;321(2):143-7
  • Stromberg I, Popoli P, Muller CE, Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 2000;12(11):4033-7
  • Shiozaki S, Ichikawa S, Nakamura J, Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl) 1999;147(1):90-5
  • Wardas J, Konieczny J, Lorenc-Koci E. SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 2001;41(2):160-71
  • Correa M, Wisniecki A, Betz A, The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 2004;148(1-2):47-54
  • Trevitt J, Kawa K, Jalali A, Differential effects of adenosine antagonists in two models of parkinsonian tremor. Pharmacol Biochem Behav 2009;94(1):24-9
  • Simola N, Fenu S, Baraldi PG, Blockade of adenosine A(2A) receptors antagonizes parkinsonian tremor in the rat tacrine model by an action on specific striatal regions. Exp Neurol 2004;189(1):182-8
  • Kanda T, Jackson MJ, Smith LA, Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 1998;43(4):507-13
  • Kanda T, Jackson MJ, Smith LA, Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 2000;162(2):321-7
  • Grondin R, Bedard PJ, Hadj Tahar A, Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 1999;52(8):1673-7
  • Pinna A, Fenu S, Morelli M. Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 2001;39(3):233-8
  • Fredduzzi S, Moratalla R, Monopoli A, Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors. J Neurosci 2002;22(3):1054-62
  • Chen JF, Steyn S, Staal R, 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 2002;277(39):36040-4
  • Bove J, Marin C, Bonastre M, Adenosine A2A antagonism reverses levodopa-induced motor alterations in hemiparkinsonian rats. Synapse 2002;46(4):251-7
  • Bibbiani F, Oh JD, Petzer JP, A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson's disease. Exp Neurol 2003;184(1):285-94
  • Jimenez-Jimenez FJ, Mateo D, Gimenez-Roldan S. Premorbid smoking, alcohol consumption, and coffee drinking habits in Parkinson's disease: a case-control study. Mov Disord 1992;7(4):339-44
  • Grandinetti A, Morens DM, Reed D, Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson's disease. Am J Epidemiol 1994;139(12):1129-38
  • Ragonese P, Salemi G, Morgante L, A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson's disease. Neuroepidemiology 2003;22(5):297-304
  • Tan EK, Tan C, Fook-Chong SM, Dose-dependent protective effect of coffee, tea, and smoking in Parkinson's disease: a study in ethnic Chinese. J Neurol Sci 2003;216(1):163-7
  • Hellenbrand W, Seidler A, Boeing H, Diet and Parkinson's disease. I: a possible role for the past intake of specific foods and food groups. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 1996;47(3):636-43
  • Fall PA, Fredrikson M, Axelson O, Nutritional and occupational factors influencing the risk of Parkinson's disease: a case-control study in southeastern Sweden. Mov Disord 1999;14(1):28-37
  • Benedetti MD, Bower JH, Maraganore DM, Smoking, alcohol, and coffee consumption preceding Parkinson's disease: a case-control study. Neurology 2000;55(9):1350-8
  • Ross GW, Abbott RD, Petrovitch H, Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000;283(20):2674-9
  • Ascherio A, Zhang SM, Hernan MA, Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann Neurol 2001;50(1):56-63
  • Ascherio A, Chen H, Schwarzschild MA, Caffeine, postmenopausal estrogen, and risk of Parkinson's disease. Neurology 2003;60(5):790-5
  • Chen JF, Xu K, Petzer JP, Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease. J Neurosci 2001;21(10):RC143
  • Joghataie MT, Roghani M, Negahdar F, Protective effect of caffeine against neurodegeneration in a model of Parkinson's disease in rat: behavioral and histochemical evidence. Parkinsonism Relat Disord 2004;10(8):465-8
  • Fink JS, Kalda A, Ryu H, Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 2004;88(3):538-44
  • Carta AR, Kachroo A, Schintu N, Inactivation of neuronal forebrain A(2A) receptors protects dopaminergic neurons in a mouse model of Parkinson's disease. J Neurochem 2009;111(6):1478-89
  • Ikeda K, Kurokawa M, Aoyama S, Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease. J Neurochem 2002;80(2):262-70
  • Pierri M, Vaudano E, Sager T, KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 2005;48(4):517-24
  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 1996;118(6):1461-8
  • Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson's disease. Pharmacol Ther 2005;105(3):267-310
  • Jenner P. A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology 2003;61(11 Suppl 6):S32-8
  • Ongini E, Fredholm BB. Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci 1996;17(10):364-72
  • Kase H, Aoyama S, Ichimura M, Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology 2003;61(11 Suppl 6):S97-100
  • Brooks DJ, Doder M, Osman S, Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 2008;62(9):671-81
  • Lundblad M, Vaudano E, Cenci MA. Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia. J Neurochem 2003;84(6):1398-410
  • Inoue M, Kanda T, Arai M, Impaired expression of brain natriuretic peptide gene in diabetic rats with myocardial infarction. Exp Clin Endocrinol Diabetes 1998;106(6):484-8
  • Ongini E, Dionisotti S, Gessi S, Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 1999;359(1):7-10
  • Neustadt BR, Hao J, Lindo N, Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 2007;17(5):1376-80
  • Hodgson RA, Bertorelli R, Varty GB, Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazol o[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 2009;330(1):294-303
  • Hodgson RA, Bedard PJ, Varty GB, Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 2010; In press
  • Weiss SM, Benwell K, Cliffe IA, Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease. Neurology 2003;61(11 Suppl 6):S101-6
  • Gillespie RJ, Bamford SJ, Botting R, Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 2009;52(1):33-47
  • Wade A, Bakhtyari A, Thomas R, BIIB014/V2006: pharmacokinetics in young and elderly healthy subjects. International Conference on ‘Targeting adenosine A2A receptors in PD and other CNS Disorders’; Boston; 2006
  • Brooks DJ, Papapetropoulos S, Vandenhende F, An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin Neuropharmacol 2010;33(2):55-60
  • LeWitt PA, Guttman M, Tetrud JW, Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces ‘off’ time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 2008;63(3):295-302
  • Hauser RA, Shulman LM, Trugman JM, Study of istradefylline in patients with Parkinson's disease on levodopa with motor fluctuations. Mov Disord 2008;23(15):2177-85
  • Stacy M, Silver D, Mendis T, A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 2008;70(23):2233-40
  • Mizuno Y, Hasegawa K, Kondo T, Clinical efficacy of istradefylline (KW-6002) in Parkinson's disease: a randomized, controlled study. Mov Disord 2010;25(10):1437-43
  • Fernandez HH, Greeley DR, Zweig RM, Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord 2010;16(1):16-20
  • Availabe from: http://www.istradefylline.com/fda.html
  • Cutler DL, Tendolkar A, Hunter J. Effects of age and gender on preladenant pharmacokinetics in healthy subjects. Mov Disord 2009;24(Suppl I):S259-60
  • Brooks DJ, Warrington S, Tendolkar A, Positron emission tomography (PET) study of preladenant in healthy male subjects. Mov Disord 2009;24(Suppl 1):S257
  • Hunter JC. SCH 420814: a novel Adenosine A2a antagonist. Exploring Parkinson's Disease and beyond. International conference on ‘Targeting Adenosine A2A Receptors in Parkinson's Disease and Other CNS Disorders’; Boston; 2006
  • Hauser RA, Pourcher E, Micheli F, Efficacy of preladenant, a novel A2A antagonist, as an adjunct to levodopa for the treatment of Parkinson's disease. Mov Disord 2009;24(Suppl 1):S256
  • Huyck SB, Wolski K, Cantillon M. Impact of A2A receptor antagonist preladenant on dyskinesia in moderate to severe Parkinson's disease: post hoc analysis of dose-finding study. Mov Disord 2009;42(Suppl 1):S266
  • Pourcher E, Micheli F, Mok V, Safety and tolerability profile of preladenant as an adjunct to L-dopa in patients with Parkinson's disease. Movement Disord 2009;24:S274
  • Lightowler S, Knight AR, Upton R, Pharmacology of BIIB014/V2006, an A2A antagonist for the treament of PD. International research conference ‘Targeting adenosine A2A receptors in PD and other CNS Disorders’; Boston; 2006
  • Available from: http://www.vernalis.com/media-centre
  • Minetti P, Tinti MO, Carminati P, 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem 2005;48(22):6887-96
  • Stasi MA, Borsini F, Varani K, ST 1535: a preferential A2A adenosine receptor antagonist. Int J Neuropsychopharmacol 2006;9(5):575-84
  • Rose S, Ramsay Croft N, Jenner P. The novel adenosine A2a antagonist ST1535 potentiates the effects of a threshold dose of l-dopa in unilaterally 6-OHDA-lesioned rats. Brain Res 2007;1133(1):110-14
  • Rose S, Jackson MJ, Smith LA, The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J Pharmacol 2006;546(1-3):82-7
  • Tronci E, Simola N, Borsini F, Characterization of the antiparkinsoni an effects of the new adenosine A(2A) receptor antagonist ST1535: acute and subchronic studies in rats. Eur J Pharmacol 2007;566(1-3):94-102
  • Available from: http://www.sigma-tau.it/eng/fasidisviluppo.asp
  • Sauer R, Maurinsh J, Reith U, Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 2000;43(3):440-8
  • Ishiwari K, Madson LJ, Farrar AM, Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats. Behav Brain Res 2007;178(2):190-9
  • Salamone JD, Betz AJ, Ishiwari K, Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Front Biosci 2008;13:3594-605
  • Agnati LF, Leo G, Vergoni AV, Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson's disease. Brain Res Bull 2004;64(2):155-64
  • Available from: http://www.clinicaltrials.gov
  • Black KJ, Campbell MC, Dickerson W, A Randomized, double-blind, placebo-controlled cross-over trial of the adenosine 2a antagonist SYN115 in Parkinson disease. Neurology 2010;74(9):A317
  • Black KJ, Koller JM, Campbell MC, Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. J Neurosci 2010;30(48):16284-92
  • Neustadt BR, Liu H, Hao J, Potent and selective adenosine A2A receptor antagonists: 1,2,4-Triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 2009;19(3):967-71
  • Available from: http://www.lundbeck.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.