598
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis

, PhD &
Pages 411-425 | Published online: 15 Feb 2011

Bibliography

  • Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 2003;7:1788-95
  • Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 2008;65:2461-83
  • Hofmann AF. The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci 2009;14:2584-98
  • Esteller A. Physiology of bile secretion. World J Gastroenterol 2008;14:5641-9
  • Strazzabosco M, Fabris L. Functional anatomy of normal bile ducts. Anat Rec 2008;291:653-60
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003;83:633-71
  • Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res 2009;50:2340-57
  • Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002;64:635-61
  • Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004;126:322-42
  • Pauli-Magnus C, Stieger B, Meier Y, Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005;43:342-57
  • Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007;24:1803-23
  • Eloranta JJ, Kullak-Ublick GA. The role of FXR in disorders of bile acid homeostasis. Physiology (Bethesda) 2008;23:286-95
  • Kosters A, Karpen SJ. Bile acid transporters in health and disease. Xenobiotica 2008;38:1043-71
  • Stahl S, Davies MR, Cook DI, Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008;38:725-77
  • Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 2011;201:205-59
  • Krahenbuhl S, Talos C, Fischer S, Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 1994;19:471-9
  • Monte MJ, Marin JJ, Antelo A, Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 2009;15:804-16
  • Rust C, Wild N, Bernt C, Bile acid-induced apoptosis in hepatocytes is caspase-6-dependent. J Biol Chem 2009;284:2908-16
  • Dawson PA, Huxley S, Gardiner B, Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 2009;58:910-19
  • Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch 2004;447:566-70
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004;447:653-65
  • Stolz A, Takikawa H, Ookhtens M, The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol 1989;51:161-76
  • Agellon LB, Torchia EC. Intracellular transport of bile acids. Biochim Biophys Acta 2000;1486:198-209
  • Reichen J, Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol 1976;231:734-42
  • Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch 2007;453:611-20
  • Stieger B. Recent insights into the function and regulation of the bile salt export pump (ABCB11). Curr Opin Lipidol 2009;20:176-81
  • Anwer MS. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 2004;39:581-90
  • Schonhoff CM, Thankey K, Webster CR, Rab4 facilitates cyclic adenosine monophosphate-stimulated bile acid uptake and Na+-taurocholate cotransporting polypeptide translocation. Hepatology 2008;48:1665-70
  • Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 2008;38:778-801
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010;62:1-96
  • Gui C, Miao Y, Thompson L, Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol 2008;584:57-65
  • Pizzagalli F, Varga Z, Huber RD, Identification of steroid sulfate transport processes in the human mammary gland. J Clin Endocrinol Metab 2003;88:3902-12
  • Grube M, Kock K, Karner S, Modification of OATP2B1-mediated transport by steroid hormones. Mol Pharmacol 2006;70:1735-41
  • Sun AQ, Ponamgi VM, Boyer JL, Membrane trafficking of the human organic anion-transporting polypeptide C (hOATPC). Pharm Res 2008;25:463-74
  • Kock K, Koenen A, Giese B, Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization. J Biol Chem 2010;285:11336-47
  • Gerloff T, Stieger B, Hagenbuch B, The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998;273:10046-50
  • Carlton VE, Harris BZ, Puffenberger EG, Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 2003;34:91-6
  • Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis 2010;30:125-33
  • Lo Sasso G, Petruzzelli M, Moschetta A. A translational view on the biliary lipid secretory network. Biochim Biophys Acta 2008;1781:79-96
  • Wang YD, Chen WD, Moore DD, FXR: a metabolic regulator and cell protector. Cell Res 2008;18:1087-95
  • Makishima M, Okamoto AY, Repa JJ, Identification of a nuclear receptor for bile acids. Science 1999;284:1362-5
  • Noe J, Hagenbuch B, Meier PJ, Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 2001;33:1223-31
  • Wakabayashi Y, Kipp H, Arias IM. Transporters on demand: intracellular reservoirs and cycling of bile canalicular ABC transporters. J Biol Chem 2006;281:27669-73
  • Beuers U. Drug Insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 2006;3:318-28
  • Smit JJ, Schinkel AH, Oude Elferink RP, Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993;75:451-62
  • Small DM. Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci USA 2003;100:4-6
  • Davit-Spraul A, Gonzales E, Baussan C, The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis 2010;30:134-46
  • Hazard SE, Patel SB. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch 2007;453:745-52
  • Trauner M, Fickert P, Halilbasic E, Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 2008;158:542-8
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2007;453:643-59
  • Nies AT, Schwab M, Keppler D. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol 2008;4:545-68
  • Kusuhara H, Sugiyama Y. ATP-binding cassette, subfamily G (ABCG family). Pflugers Arch 2007;453:735-44
  • Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 2006;372:413-31
  • Visser WE, Wong WS, van Mullem AA, Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol 2010;315:138-45
  • de Graaf W, Hausler S, Heger M, Transporters involved in the hepatic uptake of 99mTc-mebrofenin and indocyanine green. J Hepatol 2010. [Epub aheaad of print]
  • Ho RH, Tirona RG, Leake BF, Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130:1793-806
  • Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009;158:693-705
  • Fahrmayr C, Fromm MF, Konig J. Hepatic OATP and OCT uptake transporters: their role for drug-drug interactions and pharmacogenetic aspects. Drug Metab Rev 2010;42:380-401
  • Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 2010;87:130-3
  • Kitamura S, Maeda K, Wang Y, Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 2008;36:2014-23
  • Link E, Parish S, Armitage J, SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med 2008;359:789-99
  • Mahagita C, Grassl SM, Piyachaturawat P, Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH-bile acid cotransport. Am J Physiol 2007;293:G271-8
  • Leuthold S, Hagenbuch B, Mohebbi N, Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol 2009;296:C570-82
  • Hayashi H, Takada T, Suzuki H, Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim Biophys Acta 2005;1738:54-62
  • Hirano M, Maeda K, Hayashi H, Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 2005;314:876-82
  • Lee WM. Drug-induced hepatotoxicity. N Engl J Med 2003;349:474-85
  • Meier Y, Cavallaro M, Roos M, Incidence of drug-induced liver injury in medical inpatients. Eur J Clin Pharmacol 2005;61:135-43
  • Bleibel W, Kim S, D'Silva K, Drug-induced liver injury: review article. Dig Dis Sci 2007;52:2463-71
  • Pauli-Magnus C, Meier PJ, Stieger B. Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy. Semin Liver Dis 2010;30:147-59
  • Abboud G, Kaplowitz N. Drug-induced liver injury. Drug Saf 2007;30:277-94
  • Ramachandran R, Kakar S. Histological patterns in drug-induced liver disease. J Clin Pathol 2009;62:481-92
  • Russmann S, Jetter A, Kullak-Ublick GA. Pharmacogenetics of drug-induced liver injury. Hepatology 2010;52:748-61
  • Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 2010;42:437-45
  • Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005;4:489-99
  • Stieger B, Fattinger K, Madon J, Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000;118:422-30
  • Arias IM. Cyclosporin, the biology of the bile canaliculus, and cholestasis. Gastroenterology 1993;104:1558-60
  • Bohme M, Muller M, Leier I, Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology 1994;107:255-65
  • Byrne JA, Strautnieks SS, Mieli-Vergani G, The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 2002;123:1649-58
  • Noe J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 2002;123:1659-66
  • Dietrich CG, Geier A, Lammert F. Bosentan for pulmonary hypertension. N Engl J Med 2002;347:292-4
  • Dingemanse J, van Giersbergen PL. Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet 2004;43:1089-115
  • Treiber A, Schneiter R, Hausler S, Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 2007;35:1400-7
  • Fattinger K, Funk C, Pantze M, The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 2001;69:223-31
  • Fouassier L, Kinnman N, Lefevre G, Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan. J Hepatol 2002;37:184-91
  • Meier PJ. Canalicular bile formation: beyond single transporter functions. J Hepatol 2002;37:272-3
  • Mano Y, Usui T, Kamimura H. Effects of bosentan, an endothelin receptor antagonist, on bile salt export pump and multidrug resistance-associated protein 2. Biopharm Drug Dispos 2007;28:13-18
  • Takada T, Weiss HM, Kretz O, Hepatic transport of PKI166, an epidermal growth factor receptor kinase inhibitor of the pyrrolo-pyrimidine class, and its main metabolite, ACU154. Drug Metab Dispos 2004;32:1272-8
  • Borst P, Zelcer N, van de Wetering K, On the putative co-transport of drugs by multidrug resistance proteins. FEBS Lett 2006;580:1085-93
  • Masubuchi Y. Metabolic and non-metabolic factors determining troglitazone hepatotoxicity: a review. Drug Metab Pharmacokinet 2006;21:347-56
  • Julie NL, Julie IM, Kende AI, Mitochondrial dysfunction and delayed hepatotoxicity: another lesson from troglitazone. Diabetologia 2008;51:2108-16
  • Morgan RE, Trauner M, van Staden CJ, Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 2010;118:485-500
  • Gonzalez MC, Reyes H, Arrese M, Intrahepatic cholestasis of pregnancy in twin pregnancies. J Hepatol 1989;9:84-90
  • Pusl T, Beuers U. Intrahepatic cholestasis of pregnancy. Orphanet J Rare Dis 2007;2:26
  • Hay JE. Liver disease in pregnancy. Hepatology 2008;47:1067-76
  • Geenes V, Williamson C. Intrahepatic cholestasis of pregnancy. World J Gastroenterol 2009;15:2049-66
  • Kreek MJ. Female sex steroids and cholestasis. Semin Liver Dis 1987;7:8-23
  • Reyes H, Simon FR. Intrahepatic cholestasis of pregnancy: an estrogen-related disease. Semin Liver Dis 1993;13:289-301
  • Meng LJ, Reyes H, Axelson M, Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: effect of ursodeoxycholic acid therapy. Hepatology 1997;26:1573-9
  • Reyes H, Sjovall J. Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann Med 2000;32:94-106
  • Laatikainen T, Karjalainen O. Excertion of progesterone metabolites in urine and bile of pregnant women with intrahepatic cholestasis. J Steroid Biochem 1973;4:641-8
  • Lindberg MC. Hepatobiliary complications of oral contraceptives. J Gen Intern Med 1992;7:199-209
  • Vallejo M, Briz O, Serrano MA, Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol 2006;44:1150-7
  • Meyers M, Slikker W, Pascoe G, Characterization of cholestasis induced by estradiol-17 beta-D-glucuronide in the rat. J Pharmacol Exp Ther 1980;214:87-93
  • Geier A, Dietrich CG, Gerloff T, Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta 2003;1609:87-94
  • Simon FR, Fortune J, Iwahashi M, Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 1996;271:G1043-52
  • Bossard R, Stieger B, O'Neill B, Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest 1993;91:2714-20
  • Huang L, Smit JW, Meijer DK, Mrp2 is essential for estradiol-17beta(beta-D-glucuronide)-induced cholestasis in rats. Hepatology 2000;32:66-72
  • Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 2008;14:6786-801
  • Akita H, Suzuki H, Ito K, Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta 2001;1511:7-16
  • Marzolini C, Tirona RG, Gervasini G, A common polymorphism in the bile acid receptor farnesoid X receptor is associated with decreased hepatic target gene expression. Mol Endocrinol 2007;21:1769-80
  • Van Mil SW, Milona A, Dixon PH, Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 2007;133:507-16
  • van den Berg SW, Dolle ME, Imholz S, Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: a population-based cohort study. Int J Obes (Lond) 2009;33:1143-52
  • Kovacs P, Kress R, Rocha J, Variation of the gene encoding the nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. J Hepatol 2008;48:116-24
  • Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis 2009;29:400-11
  • Daly AK. Drug-induced liver injury: past, present and future. Pharmacogenomics 2010;11:607-11
  • Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet 2010;11:241-6
  • Karlsen TH, Hov JR. Genetics of cholestatic liver disease in 2010. Curr Opin Gastroenterol 2010;26:251-8
  • Tirona RG, Leake BF, Merino G, Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 2001;276:35669-75
  • Marzolini C, Tirona RG, Kim RB. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 2004;5:273-82
  • Zair ZM, Eloranta JJ, Stieger B, Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics 2008;9:597-624
  • Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 2009;5:703-29
  • Rodrigues AC. Efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2010;6:621-32
  • Franke RM, Gardner ER, Sparreboom A. Pharmacogenetics of drug transporters. Curr Pharm Des 2010;16:220-30
  • Sissung TM, Baum CE, Kirkland CT, Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol 2010;44:152-67
  • Ho RH, Leake BF, Roberts RL, Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 2004;279:7213-22
  • Lang C, Meier Y, Stieger B, Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 2007;17:47-60
  • Meier Y, Pauli-Magnus C, Zanger UM, Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology 2006;44:62-74
  • Byrne JA, Strautnieks SS, Ihrke G, Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology 2009;49:553-67
  • Ho RH, Leake BF, Kilkenny DM, Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): functional characterization and interindividual variability. Pharmacogenet Genomics 2010;20:45-57
  • Saito S, Iida A, Sekine A, Three hundred twenty-six genetic variations in genes encoding nine members of ATP-binding cassette, subfamily B (ABCB/MDR/TAP), in the Japanese population. J Hum Genet 2002;47:38-50
  • Pauli-Magnus C, Kerb R, Fattinger K, BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 2004;39:779-91
  • Lang T, Haberl M, Jung D, Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11). Drug Metab Dispos 2006;34:1582-99
  • Kim SR, Saito Y, Itoda M, Genetic variations of the ABC transporter gene ABCB11 encoding the human bile salt export pump (BSEP) in a Japanese population. Drug Metab Pharmacokinet 2009;24:277-81
  • Chen WM, Erdos MR, Jackson AU, Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 2008;118:2620-8
  • Thomas C, Pellicciari R, Pruzanski M, Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008;7:678-93
  • Thomas C, Auwerx J, Schoonjans K. Bile acids and the membrane bile acid receptor TGR5–connecting nutrition and metabolism. Thyroid 2008;18:167-74
  • Daly AK, Aithal GP, Leathart JB, Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007;132:272-81
  • Choi JH, Ahn BM, Yi J, MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet Genomics 2007;17:403-15
  • Sookoian S, Castano G, Gianotti TF, Polymorphisms of MRP2 (ABCC2) are associated with susceptibility to nonalcoholic fatty liver disease. J Nutr Biochem 2009;20:765-70
  • Jacquemin E, Cresteil D, Manouvrier S, Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet 1999;353:210-11
  • Pauli-Magnus C, Lang T, Meier Y. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 2004;14:91-102
  • Dixon PH, Weerasekera N, Linton KJ, Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet 2000;9:1209-17
  • Mullenbach R, Linton KJ, Wiltshire S, ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy. J Med Genet 2003;40:e70
  • Gendrot C, Bacq Y, Brechot MC, A second heterozygous MDR3 nonsense mutation associated with intrahepatic cholestasis of pregnancy. J Med Genet 2003;40:e32
  • Keitel V, Vogt C, Haussinger D, Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 2006;131:624-9
  • Floreani A, Carderi I, Variola A, A novel multidrug-resistance protein 2 gene mutation identifies a subgroup of patients with primary biliary cirrhosis and pruritus. Hepatology 2006;43:1152-4
  • Wasmuth HE, Glantz A, Keppeler H, Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene. Gut 2007;56:265-70
  • Schneider G, Paus TC, Kullak-Ublick GA, Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology 2007;45:150-8
  • Bacq Y, Gendrot C, Perrotin F, ABCB4 gene mutations and single-nucleotide polymorphisms in women with intrahepatic cholestasis of pregnancy. J Med Genet 2009;46:711-15
  • Kitsiou-Tzeli S, Traeger-Synodinos J, Giannatou E, The c.504T>C (p.Asn168Asn) polymorphism in the ABCB4 gene as a predisposing factor for intrahepatic cholestasis of pregnancy in Greece. Liver Int 2010;30:489-91
  • Eloranta ML, Heiskanen JT, Hiltunen MJ, Multidrug resistance 3 gene mutation 1712delT and estrogen receptor alpha gene polymorphisms in Finnish women with obstetric cholestasis. Eur J Obstet Gynecol Reprod Biol 2002;105:132-5
  • Savander M, Ropponen A, Avela K, Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy. Gut 2003;52:1025-9
  • Eloranta ML, Hakli T, Hiltunen M, Association of single nucleotide polymorphisms of the bile salt export pump gene with intrahepatic cholestasis of pregnancy. Scand J Gastroenterol 2003;38:648-52
  • Meier Y, Zodan T, Lang C, Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol 2008;14:38-45
  • Dixon PH, van Mil SW, Chambers J, Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut 2009;58:537-44
  • Favre N, Abergel A, Blanc P, Unusual presentation of severe intrahepatic cholestasis of pregnancy leading to fetal death. Obstet Gynecol 2009;114:491-3
  • Zimmer V, Mullenbach R, Simon E, Combined functional variants of hepatobiliary transporters and FXR aggravate intrahepatic cholestasis of pregnancy. Liver Int 2009;29:1286-8
  • Chang KO, George DW. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J Virol 2007;81:9633-40
  • Scholtes C, Diaz O, Icard V, Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J Hepatol 2008;48:192-9
  • Lebovics E, Seif F, Kim D, Pruritus in chronic hepatitis C: association with high serum bile acids, advanced pathology, and bile duct abnormalities. Dig Dis Sci 1997;42:1094-9
  • Jorquera F, Monte MJ, Guerra J, Usefulness of combined measurement of serum bile acids and ferritin as additional prognostic markers to predict failure to reach sustained response to antiviral treatment in chronic hepatitis C. J Gastroenterol Hepatol 2005;20:547-54
  • Iwata R, Stieger B, Mertens JC, The role of bile acid retention and a common polymorphism in the ABCB11 gene as host factors affecting antiviral treatment response in chronic hepatitis C. J Viral Hepat 2010. [Epub ahead of print]
  • Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 2006;44:778-87
  • Podevin P, Rosmorduc O, Conti F, Bile acids modulate the interferon signalling pathway. Hepatology 1999;29:1840-7
  • Ramm GA, Shepherd RW, Hoskins AC, Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment. Hepatology 2009;49:533-44
  • Iwata R, Baur K, Stieger B, A common polymorphism in the ABCB11 gene is associated with advanced fibrosis in hepatitis C but not in non-alcoholic fatty liver disease. Clin Sci (Lond) 2011;120:287-96
  • Hall RG, Leff RD, Gumbo T. Treatment of active pulmonary tuberculosis in adults: current standards and recent advances. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2009;29:1468-81
  • Yabuuchi H, Tanaka K, Maeda M, Cloning of the dog bile salt export pump (BSEP; ABCB11) and functional comparison with the human and rat proteins. Biopharm Drug Dispos 2008;29:441-8
  • Funk C, Ponelle C, Scheuermann G, Pantze M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 2001;59:627-35
  • Lee JK, Marion TL, Abe K, Hepatobiliary disposition of troglitazone and metabolites in rat and human sandwich-cultured hepatocytes: use of Monte Carlo simulations to assess the impact of changes in biliary excretion on troglitazone sulfate accumulation. J Pharmacol Exp Ther 2010;332:26-34
  • Swift B, Pfeifer ND, Brouwer KL. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 2010;42:446-71
  • Rippin SJ, Hagenbuch B, Meier PJ, Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 2001;33:776-82
  • Newsome PN, Johannessen I, Boyle S, Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003;124:1891-900
  • Peters R, Wolf MJ, van den Broek M, Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture. PLoS One 2010;5:e15689
  • Ghodsizadeh A, Taei A, Totonchi M, Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev 2010;6:622-32
  • Rashid ST, Corbineau S, Hannan N, Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 2010;120:3127-36
  • Asgari S, Pournasr B, Salekdeh GH, Induced pluripotent stem cells: 1a new era for hepatology. J Hepatol 2010;53:738-51
  • Kroetz DL, Yee SW, Giacomini KM. The pharmacogenomics of membrane transporters project: research at the interface of genomics and transporter pharmacology. Clin Pharmacol Ther 2010;87:109-16
  • Romaine SP, Bailey KM, Hall AS, The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J 2010;10:1-11
  • Mougey EB, Feng H, Castro M, Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics 2009;19:129-38
  • Picard N, Yee SW, Woillard JB, The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther 2010;87:100-8
  • Chen W, Liu J, Gluud C. Bile acids for viral hepatitis. Cochrane Database Syst Rev 2007;(4):CD003181

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.