281
Views
9
CrossRef citations to date
0
Altmetric
Reviews

The impact of cholesterol and its metabolites on drug metabolism

Pages 387-398 | Published online: 15 Feb 2011

Bibliography

  • Fiorucci S, Rizzo G, Donini A, Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med 2007;13(7):298-309
  • Thomas C, Pellicciari R, Pruzanski M, Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008;7(8):678-93
  • Rezen T, Rozman D, Pascussi JM, Monostory K. Interplay between cholesterol and drug metabolism. Biochim Biophys Acta 2011;1814(1):146-60
  • Forman BM, Ruan B, Chen J, The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc Natl Acad Sci USA 1997;94(20):10588-93
  • Janowski BA, Grogan MJ, Jones SA, Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA 1999;96(1):266-71
  • Chiang JY, Kimmel R, Stroup D. Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 2001;262(1-2):257-65
  • Lehmann JM, Kliewer SA, Moore LB, Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 1997;272(6):3137-40
  • Makishima M, Okamoto AY, Repa JJ, Identification of a nuclear receptor for bile acids. Science 1999;284(5418):1362-5
  • Parks DJ, Blanchard SG, Bledsoe RK, Bile acids: natural ligands for an orphan nuclear receptor. Science 1999;284(5418):1365-8
  • Wang H, Chen J, Hollister K, Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999;3(5):543-53
  • Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005;25(10):2020-30
  • Eloranta JJ, Kullak-Ublick GA. The role of FXR in disorders of bile acid homeostasis. Physiology (Bethesda) 2008;23:286-95
  • Modica S, Bellafante E, Moschetta A. Master regulation of bile acid and xenobiotic metabolism via the FXR, PXR and CAR trio. Front Biosci 2009;14:4719-45
  • Maglich JM, Stoltz CM, Goodwin B, Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002;62(3):638-46
  • Moore LB, Parks DJ, Jones SA, Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 2000;275(20):15122-7
  • Kakizaki S, Yamazaki Y, Takizawa D, Negishi M. New insights on the xenobiotic-sensing nuclear receptors in liver diseases--CAR and PXR. Curr Drug Metab 2008;9(7):614-21
  • Kocarek TA, Kraniak JM, Reddy AB. Regulation of rat hepatic cytochrome P450 expression by sterol biosynthesis inhibition: inhibitors of squalene synthase are potent inducers of CYP2B expression in primary cultured rat hepatocytes and rat liver. Mol Pharmacol 1998;54(3):474-84
  • Ourlin JC, Handschin C, Kaufmann M, Meyer UA. A Link between cholesterol levels and phenobarbital induction of cytochromes P450. Biochem Biophys Res Commun 2002;291(2):378-84
  • Kocarek TA, Mercer-Haines NA. Squalestatin 1-inducible expression of rat CYP2B: evidence that an endogenous isoprenoid is an activator of the constitutive androstane receptor. Mol Pharmacol 2002;62(5):1177-86
  • Shenoy SD, Spencer TA, Mercer-Haines NA, Induction of CYP3A by 2,3-oxidosqualene:lanosterol cyclase inhibitors is mediated by an endogenous squalene metabolite in primary cultured rat hepatocytes. Mol Pharmacol 2004;65(5):1302-12
  • Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 2005;433(2):387-96
  • Duniec-Dmuchowski Z, Fang HL, Strom SC, Human pregnane X receptor activation and CYP3A4/CYP2B6 induction by 2,3-oxidosqualene:lanosterol cyclase inhibition. Drug Metab Dispos 2009;37(4):900-8
  • Shenoy SD, Spencer TA, Mercer-Haines NA, CYP3A induction by liver X receptor ligands in primary cultured rat and mouse hepatocytes is mediated by the pregnane X receptor. Drug Metab Dispos 2004;32(1):66-71
  • Gnerre C, Schuster GU, Roth A, LXR deficiency and cholesterol feeding affect the expression and phenobarbital-mediated induction of cytochromes P450 in mouse liver. J Lipid Res 2005;46(8):1633-42
  • Duniec-Dmuchowski Z, Ellis E, Strom SC, Kocarek TA. Regulation of CYP3A4 and CYP2B6 expression by liver X receptor agonists. Biochem Pharmacol 2007;74(10):1535-40
  • Handschin C, Podvinec M, Amherd R, Cholesterol and bile acids regulate xenosensor signaling in drug-mediated induction of cytochromes P450. J Biol Chem 2002;277(33):29561-7
  • Beaudet MJ, Desrochers M, Lachaud AA, Anderson A. The CYP2B2 phenobarbital response unit contains binding sites for hepatocyte nuclear factor 4, PBX-PREP1, the thyroid hormone receptor beta and the liver X receptor. Biochem J 2005;388(Pt 2):407-18
  • Song C, Hiipakka RA, Liao S. Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids 2000;65(8):423-7
  • Janowski BA, Willy PJ, Devi TR, An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996;383(6602):728-31
  • Uppal H, Saini SP, Moschetta A, Activation of LXRs prevents bile acid toxicity and cholestasis in female mice. Hepatology 2007;45(2):422-32
  • Verreault M, Senekeo-Effenberger K, Trottier J, The liver X-receptor alpha controls hepatic expression of the human bile acid-glucuronidating UGT1A3 enzyme in human cells and transgenic mice. Hepatology 2006;44(2):368-78
  • Mitro N, Vargas L, Romeo R, T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett 2007;581(9):1721-6
  • Reddy BS, Hanson D, Mangat S, Effect of high-fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols. J Nutr 1980;110(9):1880-7
  • Reddy BS. Diet and excretion of bile acids. Cancer Res 1981;41(9 Pt 2):3766-8
  • Kay RM. Effects of diet on the fecal excretion and bacterial modification of acidic and neutral steroids, and implications for colon carcinogenesis. Cancer Res 1981;41(9 Pt 2):3774-7
  • Hietanen E, Ahotupa M, Heikela A, Laitinen M. Dietary cholesterol-induced changes of xenobiotic metabolism in liver. II. Effects of phenobarbitone and carbon tetrachloride on activities of drug-metabolizing enzymes. Drug Nutr Interact 1982;1(4):313-27
  • Hietanen E, Hanninen O, Laitinen M, Lang M. Dietary cholesterol-induced enhancement of hepatic biotransformation rate in male rats. Pharmacology 1978;17(3):163-72
  • Hietanen E, Ahotupa M, Bereziat JC, Monoclonal antibody characterization of hepatic and extrahepatic cytochrome P-450 activities in rats treated with phenobarbital or methylcholanthrene and fed various cholesterol diets. Biochem Pharmacol 1987;36(22):3973-80
  • Deliconstantinos G, Anastasopoulou K, Karayiannakos P. Modulation of hepatic microsomal Ca2+-stimulated ATPase and drug oxidase activities of guinea pigs by dietary cholesterol. Biochem Pharmacol 1983;32(7):1309-12
  • Irizar A, Ioannides C. Marked inhibition of hepatic cytochrome P450 activity in cholesterol-induced atherosclerosis in rabbits. Toxicology 1998;126(3):179-93
  • Nakahama T, Fukuhara M, Ohkubo C, Asano M. Modulation of hepatic and pulmonary drug-metabolizing enzyme activities of rabbits by dietary cholesterol. Res Commun Chem Pathol Pharmacol 1992;75(1):57-68
  • Remaley AT, Schumacher UK, Amouzadeh HR, Identification of novel differentially expressed hepatic genes in cholesterol-fed rabbits by a non-targeted gene approach. J Lipid Res 1995;36(2):308-14
  • Plewka A, Kaminski M. Influence of cholesterol and protein diet on liver cytochrome P-450-dependent monooxygenase system in rats. Exp Toxicol Pathol 1996;48(4):249-53
  • Orolin J, Vecera R, Markova I, Differences in hepatic expression of genes involved in lipid homeostasis between hereditary hypertriglyceridemic rats and healthy Wistar rats and in their response to dietary cholesterol. Food Chem Toxicol 2009;47(10):2624-30
  • Roth A, Looser R, Kaufmann M, Meyer UA. Sterol regulatory element binding protein 1 interacts with pregnane X receptor and constitutive androstane receptor and represses their target genes. Pharmacogenet Genomics 2008;18(4):325-37
  • Baijal PK, Fitzpatrick DW, Bird RP. Modulation of colonic xenobiotic metabolizing enzymes by feeding bile acids: comparative effects of cholic, deoxycholic, lithocholic and ursodeoxycholic acids. Food Chem Toxicol 1998;36(7):601-7
  • Schuetz EG, Strom S, Yasuda K, Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001;276(42):39411-18
  • Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 2006;3(3):231-51
  • Jung D, Podvinec M, Meyer UA, Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 2002;122(7):1954-66
  • Gnerre C, Blattler S, Kaufmann MR, Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 2004;14(10):635-45
  • Xie W, Radominska-Pandya A, Shi Y, An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 2001;98(6):3375-80
  • Kast HR, Goodwin B, Tarr PT, Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002;277(4):2908-15
  • Barbier O, Torra IP, Sirvent A, FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 2003;124(7):1926-40
  • Erichsen TJ, Aehlen A, Ehmer U, Regulation of the human bile acid UDP-glucuronosyltransferase 1A3 by the farnesoid X receptor and bile acids. J Hepatol 2010;52(4):570-8
  • Fang HL, Strom SC, Cai H, Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor. Mol Pharmacol 2005;67(4):1257-67
  • Song CS, Echchgadda I, Baek BS, Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 2001;276(45):42549-56
  • Jung D, Mangelsdorf DJ, Meyer UA. Pregnane X receptor is a target of farnesoid X receptor. J Biol Chem 2006;281(28):19081-91
  • Bae Y, Kemper JK, Kemper B. Repression of CAR-mediated transactivation of CYP2B genes by the orphan nuclear receptor, short heterodimer partner (SHP). DNA Cell Biol 2004;23(2):81-91
  • Ourlin JC, Lasserre F, Pineau T, The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol Endocrinol 2003;17(9):1693-703
  • Jung D, Elferink MG, Stellaard F, Groothuis GM. Analysis of bile acid-induced regulation of FXR target genes in human liver slices. Liver Int 2007;27(1):137-44
  • Miyata M, Matsuda Y, Tsuchiya H, Chenodeoxycholic acid-mediated activation of the farnesoid X receptor negatively regulates hydroxysteroid sulfotransferase. Drug Metab Pharmacokinet 2006;21(4):315-23
  • Staudinger JL, Goodwin B, Jones SA, The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 2001;98(6):3369-74
  • Dussault I, Yoo HD, Lin M, Identification of an endogenous ligand that activates pregnane X receptor-mediated sterol clearance. Proc Natl Acad Sci USA 2003;100(3):833-8
  • Goodwin B, Gauthier KC, Umetani M, Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci USA 2003;100(1):223-8
  • Zollner G, Wagner M, Moustafa T, Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 2006;290(5):G923-32
  • Zollner G, Fickert P, Fuchsbichler A, Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 2003;39(4):480-8
  • Guo GL, Lambert G, Negishi M, Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 2003;278(46):45062-71
  • Stedman CA, Liddle C, Coulter SA, Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci USA 2005;102(6):2063-8
  • Wagner M, Halilbasic E, Marschall HU, CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 2005;42(2):420-30
  • Beilke LD, Aleksunes LM, Holland RD, Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab Dispos 2009;37(5):1035-45
  • Zhang J, Huang W, Qatanani M, The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004;279(47):49517-22
  • Kakizaki S, Takizawa D, Tojima H, Xenobiotic-Sensing Nuclear Receptors CAR and PXR as Drug Targets in Cholestatic Liver Disease. Curr Drug Targets 2009;10(11):1156-63
  • Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol 2009;156(1):7-27
  • Khan AA, Dragt BS, Porte RJ, Groothuis GM. Regulation of VDR expression in rat and human intestine and liver--consequences for CYP3A expression. Toxicol In Vitro 2010;24(3):822-9
  • Makishima M, Lu TT, Xie W, Vitamin D receptor as an intestinal bile acid sensor. Science 2002;296(5571):1313-16
  • Drocourt L, Ourlin JC, Pascussi JM, Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 2002;277(28):25125-32
  • Echchgadda I, Song CS, Roy AK, Chatterjee B. Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 2004;65(3):720-9
  • Song CS, Echchgadda I, Seo YK, An essential role of the CAAT/enhancer binding protein-alpha in the vitamin D-induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1). Mol Endocrinol 2006;20(4):795-808
  • Tachibana S, Yoshinari K, Chikada T, Involvement of Vitamin D receptor in the intestinal induction of human ABCB1. Drug Metab Dispos 2009;37(8):1604-10
  • McCarthy TC, Li X, Sinal CJ. Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 2005;280(24):23232-42
  • Matsubara T, Yoshinari K, Aoyama K, Role of vitamin D receptor in the lithocholic acid-mediated CYP3A induction in vitro and in vivo. Drug Metab Dispos 2008;36(10):2058-63
  • Khan AA, Chow EC, Porte RJ, The role of lithocholic acid in the regulation of bile acid detoxication, synthesis, and transport proteins in rat and human intestine and liver slices. Toxicol In Vitro 2011;25(1):80-90
  • Khan AA, Chow EC, van Loenen-Weemaes AM, Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver. Eur J Pharm Sci 2009;37(2):115-25
  • Stedman C, Robertson G, Coulter S, Liddle C. Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice. J Biol Chem 2004;279(12):11336-43
  • Lu Y, Heydel JM, Li X, Lithocholic acid decreases expression of UGT2B7 in Caco-2 cells: a potential role for a negative farnesoid X receptor response element. Drug Metab Dispos 2005;33(7):937-46
  • Yu J, Lo JL, Huang L, Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem 2002;277(35):31441-7
  • Paolini M, Pozzetti L, Piazza F, Bile acid structure and selective modulation of murine hepatic cytochrome P450-linked enzymes. Hepatology 1999;30(3):730-9
  • Paolini M, Pozzetti L, Montagnani M, Ursodeoxycholic acid (UDCA) prevents DCA effects on male mouse liver via up-regulation of CYP [correction of CXP] and preservation of BSEP activities. Hepatology 2002;36(2):305-14
  • Tanaka M, Takezawa N, Kumai T, Ebselen protects against the reduction in levels of drug-metabolizing enzymes in livers of rats with deoxycholic acid-induced liver injury. Pharmacol Toxicol 2002;91(2):64-70
  • Becquemont L, Glaeser H, Drescher S, Effects of ursodeoxycholic acid on P-glycoprotein and cytochrome P450 3A4-dependent pharmacokinetics in humans. Clin Pharmacol Ther 2006;79(5):449-60
  • Marschall HU, Wagner M, Zollner G, Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 2005;129(2):476-85
  • Dilger K, Denk A, Heeg MH, Beuers U. No relevant effect of ursodeoxycholic acid on cytochrome P450 3A metabolism in primary biliary cirrhosis. Hepatology 2005;41(3):595-602
  • Toda T, Ohi K, Kudo T, Ciprofloxacin suppresses Cyp3a in mouse liver by reducing lithocholic acid-producing intestinal flora. Drug Metab Pharmacokinet 2009;24(3):201-8
  • Zollner G, Wagner M, Fickert P, Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int 2007;27(7):920-9
  • Recinos A III, Carr BK, Bartos DB, Liver gene expression associated with diet and lesion development in atherosclerosis-prone mice: induction of components of alternative complement pathway. Physiol Genomics 2004;19(1):131-42
  • Maxwell KN, Soccio RE, Duncan EM, Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res 2003;44(11):2109-19
  • Zhu M, Ji G, Jin G, Yuan Z. Different responsiveness to a high-fat/cholesterol diet in two inbred mice and underlying genetic factors: a whole genome microarray analysis. Nutr Metab (Lond) 2009;6:43
  • Rezen T, Tamasi V, Lovgren-Sandblom A, Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers. BMC Genomics 2009;10:384
  • Rezen T, Juvan P, Fon Tacer K, The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism. BMC Genomics 2008;9:76
  • Zhao Y, Chan MY, Zhou S, Heng CK. Effects of atherogenic diet and atorvastatin treatment on gene expression profiles in the C57BL/6J mouse liver. Gene Expr 2008;14(3):149-58
  • Kleemann R, Verschuren L, van Erk MJ, Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome Biol 2007;8(9):R200
  • Chan LM, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 2004;21(1):25-51
  • Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 2007;1773(3):283-308
  • Huang L, Zhao A, Lew JL, Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003;278(51):51085-90
  • Liu Y, Binz J, Numerick MJ, Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003;112(11):1678-87
  • Boyer JL, Trauner M, Mennone A, Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 2006;290(6):G1124-30
  • Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 2006;290(3):G476-85
  • Khan AA, Chow EC, Porte RJ, Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver. Biopharm Drug Dispos 2009;30(5):241-58
  • Denson LA, Sturm E, Echevarria W, The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001;121(1):140-7
  • Eloranta JJ, Jung D, Kullak-Ublick GA. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol 2006;20(1):65-79
  • Jung D, Hagenbuch B, Gresh L, Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1 alpha. J Biol Chem 2001;276(40):37206-14
  • Jung D, Kullak-Ublick GA. Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 2003;37(3):622-31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.