191
Views
62
CrossRef citations to date
0
Altmetric
Reviews

Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions

Pages 543-558 | Published online: 12 Mar 2011

Bibliography

  • Estabrook RW, Franklin MR, Cohen B, Biochemical and genetic factors influencing drug metabolism. Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism 1971;20:187-99
  • Estabrook RW, Werringloer J, Masters BSS, The microsomal membrane: a seraglio for unique electron transport carriers. In: Hatefi Y, Djavadi-Ohaniance L, editors, The structural basis of membrane function. Academic Press, New York; 1976. p. 429-45
  • Watanabe J, Asaka Y, Fujimoto S, Densities of NADPH-ferrihemoprotein reductase and cytochrome P-450 molecules in the endoplasmic reticulum membrane of rat hepatocytes. J Histochem Cytochem 1993;41(1):43-9
  • Gomes AM, Winter S, Klein K, Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 2009;10(4):579-99
  • Locuson CW, Wienkers LC, Jones JP, CYP2C9 protein interactions with cytochrome b5: effects on the coupling of catalysis. Drug Metab Dispos 2007;35(7):1174-81
  • Reed JR, Hollenberg PF. Examining the mechanism of stimulation of cytochrome P450 by cytochrome b5: the effect of cytochrome b5 on the interaction between cytochrome P4502B4 and P450 reductase. J Inorg Biochem 2003;97(3):265-75
  • Yamazaki H, Nakamura M, Komatsu T, Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr Purif 2002;24(3):329-37
  • Murataliev MB, Guzov VM, Walker FA, P450 reductase and cytochrome b5 interactions with cytochrome P450: effects. Insect Biochem Mol Biol 2008;38(11):1008-15
  • Yamazaki H, Shimada T, Martin MV, Stimulation of cytochrome P450 reactions by apo-cytochrome b5: evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase. J Biol Chem 2001;276(33):30885-91
  • Perret A, Pompon D. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. Biochemistry 1998;37(33):11412-24
  • Reed JR, Eyer M, Backes WL. Functional interactions between cytochromes P450 1A2 and 2B4 require both enzymes to reside in the same phospholipid vesicle. Evidence for physical complex formation. J Biol Chem 2010;285(12):8942-52
  • Praporski S, Ng SM, Nguyen AD, Organization of cytochrome P450 enzymes involved in sex steroid synthesis. Protein-protein interactions in lipid membranes. J Biol Chem 2009;284(48):33224-32
  • Ozalp C, Szczesna-Skorupa E, Kemper B. Bimolecular fluorescence complementation analysis of cytochrome P4502C2, 2E1, and NADPH-cytochrome P450 reductase molecular interactions in living cells. Drug Metab Dispos 2005;33(9):1382-90
  • Alston K, Robinson RC, Park SS, Interactions among cytochromes P-450 in the endoplasmic reticulum. Detection of chemically cross-linked complexes with monoclonal antibodies. J Biol Chem 1991;266(2):735-9
  • Guengerich FP, Holladay LA. Hydrodynamic characterization of highly purified and functionally active liver microsomal cytochrome P-450. Biochemistry 1979;18(24):5442-9
  • French JS, Guengerich FP, Coon MJ. Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J Biol Chem 1980;255(9):4112-19
  • Wendel I, Behlke J, Janig GR. Determination of the partial specific volume of cytochrome P-450 as a model. Biomed Biochim Acta 1983;42(6):623-31
  • Dean WL, Gray RD. Hydrodynamic properties of monomeric cytochrome P-450LM2 and cytochrome P-450LM4 in normal-octylglucoside solution. Biochem Biophys Res Commun 1982;107(1):265-71
  • Tsuprun VL, Myasoedova KN, Berndt P, Quaternary structure of the liver microsomal cytochrome P-450. FEBS Lett 1986;205(1):35-40
  • Davydov DR, Fernando H, Baas BJ, Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization. Biochemistry 2005;44(42):13902-13
  • Fernando H, Davydov DR, Chin CC, Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W. Arch Biochem Biophys 2007;460(1):129-40
  • Myasoedova KN, Tsuprun VL. Cytochrome P-450: hexameric structure of the purified LM4 form. FEBS Lett 1993;325(3):251-4
  • Dong MS, Yamazaki H, Guo Z, Guengerich FP. Recombinant human cytochrome P450 1A2 and an N-terminal-truncated form: construction, purification, aggregation properties, and interactions with flavodoxin, ferredoxin, and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 1996;327(1):11-19
  • Kanaeva IP, Dedinskii IR, Skotselyas ED, Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. I. Properties of NADPH- cytochrome P450 reductase and cytochrome P450 LM2 (2B4) monomers. Arch Biochem Biophys 1992;298(2):395-402
  • Viner RI, Novikov KN, Ritov VB, Effect of different solubilizing agents on the aggregation state and catalytic activity of two purified rabbit cytochrome P450 isozymes, CYP1A2 (LM4) and CYP2B4 (LM2). Biochem Biophys Res Commun 1995;217(3):886-91
  • Davydov DR, Petushkova NA, Bobrovnikova EV, Association of cytochromes P450 1A2 and 2B4: are the interactions between different P450 species involved in the control of the monooxygenase activity and coupling? Adv Exp Med Biol 2001;500:335-8
  • Kanaeva IP, Nikityuk OV, Davydov DR, Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Arch Biochem Biophys 1992;298(2):403-12
  • Pernecky SJ, Olken NM, Bestervelt LL, Subcellular-localization, aggregation state, and catalytic activity of microsomal P450 cytochromes modified in the NH2-terminal region and expressed in Escherichia coli. Arch Biochem Biophys 1995;318(2):446-56
  • Kempf AC, Zanger UM, Meyer UA. Truncated human P450 2D6: expression in Escherichia coli, Ni(2+)-chelate affinity purification, and characterization of solubility and aggregation. Arch Biochem Biophys 1995;321(2):277-88
  • Berndt P, Magretova NN, Myasoedova KN, Cytochrome P-450 LM2 hexamer dissociation in the presence of a nonionic detergent Emulgene 913. Biokhimiia 1989;54(2):338-41
  • Davydov DR, Karyakin AV, Binas B, Kinetic studies on reduction of cytochromes P-450 and b5 by dithionite. Eur J Biochem 1985;150(1):155-9
  • Davydov DR, Deprez E, Hui Bon Hoa G, High-pressure-induced transitions in microsomal cytochrome P450 2B4 in solution – evidence for conformational inhomogeneity in the oligomers. Arch Biochem Biophys 1995;320(2):330-44
  • Subramanian M, Tam H, Zheng H, CYP2C9-CYP3A4 protein-protein interactions: role of the hydrophobic N-terminus. Drug Metab Dispos 2010;38(6):1003-9
  • Davydov DR, Petushkova NA, Archakov AI, Stabilization of P450 2B4 by its association with P450 1A2 revealed by high-pressure spectroscopy. Biochem Biophys Res Commun 2000;276(3):1005-12
  • Scott EE, Spatzenegger M, Halpert JR. A truncation of 2B subfamily cytochromes P450 yields increased expression levels, increased solubility, and decreased aggregation while retaining function. Arch Biochem Biophys 2001;395(1):57-68
  • von Wachenfeldt C, Richardson TH, Cosme J, Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modifications of its N-terminus. Arch Biochem Biophys 1997;339(1):107-14
  • Gillam EMJ. Engineering cytochrome P450 enzymes. Chem Res Toxicol 2008;21(1):220-31
  • Shukla A, Huang W, Depaz IM, Membrane integration of recombinant human P450 forms. Xenobiotica 2009;39(7):495-507
  • Cosme J, Johnson EF. Engineering microsomal cytochrome P4502C5 to be a soluble, monomeric enzyme – Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J Biol Chem 2000;275(4):2545-53
  • Cosme J, Johnson EF. Analyzing binding of N-terminal truncated, microsomal cytochrome P450s to membranes. Methods Enzymol 2002;357:116-20
  • Mast N, Andersson U, Nakayama K, Expression of human cytochrome P450 46A1 in Escherichia coli: effects of N- and C-terminal modifications. Arch Biochem Biophys 2004;428(1):99-108
  • Graham-Lorence S, Peterson JA. P450s: structural similarities and functional differences. FASEB J 1996;10(2):206-14
  • Williams PA, Cosme J, Sridhar V, Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 2000;5(1):121-31
  • Nakayama K, Puchkaev A, Pikuleva IA. Membrane binding and substrate access merge in cytochrome P4507Al, a key enzyme in degradation of cholesterol. J Biol Chem 2001;276(33):31459-65
  • Muralidhara BK, Negi S, Chin CC, Conformational flexibility of mammalian cytochrome P4502B4 in binding imidazole inhibitors with different ring chemistry and side chains – Solution thermodynamics and molecular modeling. J Biol Chem 2006;281(12):8051-61
  • Seliskar M, Kosir R, Roman D. Expression of microsomal lanosterol 14 alpha-demethylase (CYP51) in an engineered soluble monomeric form. Biochem Biophys Res Commun 2008;371(4):855-9
  • Mcintosh PR, Kawato S, Freedman RB, Evidence from cross-linking and rotational diffusion studies that cytochrome P450 can from molecular aggregates in rabbit-liver microsomal membranes. FEBS Lett 1980;122(1):54-8
  • Richter C, Winterhalter KH, Cherry RJ. Rotational diffusion of cytochrome P-450 in rat liver microsomes. FEBS Lett 1979;102(1):151-4
  • Gut J, Richter C, Cherry RJ, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced cross-linking. J Biol Chem 1983;258(14):8588-94
  • Gut J, Kawato S, Cherry RJ, Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes. Biochim Biophys Acta 1985;817(2):217-28
  • Greinert R, Finch SA, Stier A. Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence depolarization. Xenobiotica 1982;12(11):717-26
  • Hildebrandt P, Garda H, Stier A, Protein-protein interactions in microsomal cytochrome P-450 isozyme LM2 and their effect on substrate binding. Eur J Biochem 1989;186(1-2):383-8
  • Kawato S, Ashikawa I, Iwase T, Drug-induction decreases the mobility of cytochrome P-450 in rat liver microsomes: protein rotation study. J Biochem 1991;109(4):587-93
  • Schwarz D, Pirrwitz J, Ruckpaul K. Rotational diffusion of cytochrome P-450 in the microsomal membrane-evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy. Arch Biochem Biophys 1982;216(1):322-8
  • Schwarz D, Pirrwitz J, Meyer HW, Membrane topology of microsomal cytochrome P-450: saturation transfer EPR and freeze-fracture electron microscopy studies. Biochem Biophys Res Commun 1990;171(1):175-81
  • Schwarz D, Chernogolov L, Kisselev P. Complex formation in vesicle-reconstituted mitochondrial cytochrome P450 systems (CYP11A1 and CYP11B1) as evidenced by rotational diffusion experiments using EPR and ST-EPR. Biochemistry 1999;38(29):9456-64
  • Yamada M, Ohta Y, Bachmanova GI, Effect of microsome-liposome fusion on the rotational mobility of cytochrome P450IIB4 in rabbit liver microsomes. J Inorg Biochem 2001;83(4):261-8
  • Yamada M, Ohta Y, Bachmanova GI, Dynamic interactions of rabbit liver cytochromes P450IA2 and P450IIB4 with cytochrome b5 and NADPH-cytochrome P450 reductase in proteoliposomes. Biochemistry 1995;34(32):10113-19
  • Ohta Y, Sakaki T, Yabusaki Y, Rotation and membrane topology of genetically expressed methylcholanthrene-inducible cytochrome P-450IA1 lacking the N-terminal hydrophobic segment in yeast microsomes. J Biol Chem 1994;269(22):15597-600
  • Ohta Y, Kawato S, Tagashira H, Dynamic structures of adrenocortical cytochrome P-450 in proteoliposomes and microsomes: protein rotation study. Biochemistry 1992;31(50):12680-7
  • Iwase T, Sakaki T, Yabusaki Y, Rotation and interactions of genetically expressed cytochrome P-450IA1 and NADPH-cytochrome P-450 reductase in yeast microsomes. Biochemistry 1991;30(34):8347-51
  • Ohta Y, Yanagibashi K, Hara T, Protein rotation study of cytochrome P-450 in submitochondrial particles: effect of KCl and intermolecular interactions with redox partners. J Biochem 1991;109(4):594-9
  • Kawato S, Mitani F, Iizuka T, Rotation and protein-protein interactions of cytochrome P-450 in the inner membrane of adrenocortical mitochondria. J Biochem 1988;104(2):188-91
  • Richter C. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids 1987;44:175-89
  • Taniguchi H, Imai Y, Sato R. Protein-protein and lipid-protein interactions in a reconstituted cytochrome P-450 dependent microsomal monooxygenase. Biochemistry 1987;26(22):7084-90
  • Kinosita K, Kawato S, Ikegami A. Dynamic structure of biological and model membranes – analysis by optical anisotropy decay measurement. Adv Biophys 1984;17:147-203
  • Gut J, Richter C, Cherry RJ, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P- 450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles. J Biol Chem 1982;257(12):7030-6
  • Kawato S, Gut J, Cherry RJ, Rotation of cytochrome P-450. I. Investigations of protein-protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes. J Biol Chem 1982;257(12):7023-9
  • Schwarz D, Kruger V, Chernogolov AA, Rotation of cytochrome P450SCC (CYP11A1) in proteoliposomes studied by delayed fluorescence depolarization. Biochem Biophys Res Commun 1993;195(2):889-96
  • Kiselev PA, Garda G, Finch SAE, Rotational diffusion of cytochrome P-450 in the presence of NADPH-cytochrome P-450 reductase in liposomes of different phospholipid-composition. Biol Membr 1990;7(10):1026-36
  • Greinert R, Finch SA, Stier A. Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding. Bioscience Rep 1982;2(12):991-4
  • Greinert R, Staerk H, Stier A, E-type delayed fluorescence depolarization, technique to probe rotational motion in the microsecond range. J Biochem Biophys Methods 1979;1(2):77-83
  • Ramsden JJ, Bachmanova GI, Archakov AI. Kinetetic evidence for protein clustering at a surface. Phys Rev E 1994;50(6):5072-5
  • Baskin LS, Yang CS. Identification of cross-linked cytochrome P-450 in rat liver microsomes by enzyme-immunoassay. Biochem Biophys Res Commun 1982;108(2):700-7
  • Myasoedova KN, Berndt P. Cytochrome P-450LM2 oligomers in proteoliposomes. FEBS Lett 1990;275(1-2):235-8
  • Myasoedova KN, Magretova NN. Cross-linking study of cytochrome P450 1A2 in proteoliposomes. Biosci Rep 2001;21(1):63-72
  • Hu G, Johnson EF, Kemper B. Cytochrome P450 2C8 exists as a dimer in natural membranes. Drug Metab Dispos 2010;38(11):1976-83
  • Davydov DR, Sineva EV, Sistla S, Electron transfer in the complex of membrane-bound human cytochrome P450 3A4 with the flavin domain of P450BM-3: the effect of oligomerization of the heme protein and intermittent modulation of the spin equilibrium. Biochim Biophys Acta 2010;1797(3):378-90
  • Hardt SL. Rates of diffusion controlled reactions in one, 2 and 3 dimensions. Biophys Chem 1979;10(3-4):239-43
  • Karyakin AV, Davydov DR. Kinetics of electron-transfer reactions in monooxygenase system. Vestn Akad Med Nauk SSSR 1988;1988(1):53-62
  • Davydov DR, Sineva EV, Davydova NY, Oligomerization of cytochrome P450 3A4 in phospholipid bilayer and its role in heterotropic cooperativity of the enzyme. 18-th International Symposium on Microsomes and Drug Oxidations; Beijing; 2010. p. 124
  • Watanabe J, Asaka Y, Kanai K, Relation between cytochrome P-450 increase and endoplasmic-reticulum proliferation in hepatocytes of mice treated with phenobarbital – a microphotometric and morphometric study. J Histochem Cytochem 1992;40(3):353-7
  • Szczesna-Skorupa E, Mallah B, Kemper B. Fluorescence resonance energy transfer analysis of cytochromes P450 2C2 and 2E1 molecular interactions in living cells. J Biol Chem 2003;278(33):31269-76
  • Davydov DR, Kurganov BI. Comparative study of the reaction kinetics of cytochrome P-450 reduction by NADPH-cytochrome P-450 reductase and dithionite. Biokhimiia 1982;47(9):1476-82
  • Davydov RM, Khanina OY, Iagofarov S, Effect of lipids and substrates on the kinetics of interactions of ferrocytochrome P-450 with CO. Biokhimiia 1986;51(1):125-9
  • Ledenev AN, Tverdokhlebov EN, Davydov RM. Reduction of ferricytochrome P-450 with eosin photoradical. Biofizika 1984;29(5):730-2
  • Tsong TY, Yang CS. Rapid conformational changes of cytochrome P-450: effect of dimyristoyl lecithin. Proc Natl Acad Sci USA 1978;75(12):5955-9
  • Fisher MT, Sligar SG. Temperature jump relaxation kinetics of the P-450cam spin equilibrium. Biochemistry 1987;26(15):4797-803
  • Brenner S, Hay S, Girvan HM, Conformational dynamics of the cytochrome P450BM3/N-palmitoylglycine complex: the proposed “proximal-distal” transition probed by temperature-jump spectroscopy. J Phys Chem B 2007;111(27):7879-86
  • Ziegler M, Blanck J, Ruckpaul K. Spin equilibrium relaxation kinetics of cytochrome P450 LM2. FEBS Lett 1982;150(1):219-22
  • Makris TM, von Koenig K, Schlichting I, Alteration of P450 distal pocket solvent leads to impaired proton delivery and changes in heme geometry. Biochemistry 2007;46(49):14129-40
  • Haines DC, Tomchick DR, Machius M, Pivotal role of water in the mechanism of P450BM-3. Biochemistry 2001;40(45):13456-65
  • Bancel F, Bec N, Ebel C, A central role for water in the control of the spin state of cytochrome P-450(SCC). Eur J Biochem 1997;250(2):276-85
  • Schulze H, Hui Bon Hoa G, Helms V, Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor. Biochemistry 1996;35(45):14127-38
  • Di Primo C, Deprez E, Hui Bon Hoa G, Antagonistic effects of hydrostatic pressure and osmotic pressure on cytochrome P-450(cam) spin transition. Biophys J 1995;68(5):2056-61
  • Backes WL, Tamburini PP, Jansson I, Kinetics of cytochrome P-450 reduction: evidence for faster reduction of the high-spin ferric state. Biochemistry 1985;24(19):5130-6
  • Fernando H, Halpert JR, Davydov DR. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein. Arch Biochem Biophys 2008;471(1):20-31
  • Honeychurch MJ, Hill HAO, Wong LL. The thermodynamics and kinetics of electron transfer in the cytochrome P450(cam) enzyme system. FEBS Lett 1999;451(3):351-3
  • Denisov IG, Makris TM, Sligar SG, Structure and chemistry of cytochrome P450. Chem Rev 2005;105(6):2253-77
  • Sligar SG, Cinti DL, Gibson GG, Spin state control of the hepatic cytochrome P450 redox potential. Biochem Biophys Res Commun 1979;90(3):925-32
  • Das A, Grinkova YV, Sligar SG. Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc 2007;129(45):13778-9
  • Davydov DR, Knyushko TV, Hui Bon Hoa G. High pressure induced inactivation of ferrous cytochrome P-450 LM2 (2B4) CO complex: evidence for the presence of two conformers in the oligomer. Biochem Biophys Res Commun 1992;188(1):216-21
  • Davydov DR, Hui Bon Hoa G. Pressure-induced transitions in cytochrome P450 2B4 as an evidence of its functional inhomogeneity in the proteoliposomal membrane. In: Heremans K, editor, High pressure research in the biosciences and niotechnology. Leuven University Press, Leuven; 1997. p. 111-14
  • Davydov DR, Halpert JR, Renaud JP, Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy. Biochem Biophys Res Commun 2003;312(1):121-30
  • Davydov DR, Baas BJ, Sligar SG, Allosteric mechanisms in cytochrome P450 3A4 studied by high-pressure spectroscopy: pivotal role of substrate-induced changes in the accessibility and degree of hydration of the heme pocket. Biochemistry 2007;46(26):7852-64
  • Anzenbacherova E, Hudecek J, Murgida D, Active sites of two orthologous cytochromes P450 2E1: differences revealed by spectroscopic methods. Biochem Biophys Res Commun 2005;338(1):477-82
  • Cawley GF, Zhang SX, Kelley RW, Evidence supporting the interaction of CYP2B4 and CYP1A2 in microsomal preparations. Drug Metab Dispos 2001;29(12):1529-34
  • Kaminsky LS, Guengerich FP. Cytochrome P-450 isozyme/isozyme functional interactions and NADPH-cytochrome P-450 reductase concentrations as factors in microsomal metabolism of warfarin. Eur J Biochem 1985;149(3):479-89
  • Yamazaki H, Gillam EM, Dong MS, Reconstitution of recombinant cytochrome P450 2C10(2C9) and comparison with cytochrome P450 3A4 and other forms: effects of cytochrome P450- P450 and cytochrome P450-b5 interactions. Arch Biochem Biophys 1997;342(2):329-37
  • Li DN, Pritchard MP, Hanlon SP, Competition between cytochrome P-450 isozymes for NADPH-cytochrome P-450 oxidoreductase affects drug metabolism. J Pharmacol Exp Ther 1999;289(2):661-7
  • Subramanian M, Low M, Locuson CW, CYP2D6-CYP2C9 protein-protein interactions and isoform-selective effects on substrate binding and catalysis. Drug Metab Dispos 2009;37(8):1682-9
  • Hazai E, Kupfer D. Interactions between CYP2C9 and CYP2C19 in reconstituted binary systems influence their catalytic activity: possible rationale for the inability of CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes. Drug Metab Dispos 2005;33(1):157-64
  • Cawley GF, Batie CJ, Backes WL. Substrate-dependent competition of different P450 isozymes for limiting NADPH-cytochrome P450 reductase. Biochemistry 1995;34(4):1244-7
  • Backes WL, Batie CJ, Cawley GF. Interactions among P450 enzymes when combined in reconstituted systems: formation of a 2B4-1A2 complex with a high affinity for NADPH- cytochrome P450 reductase. Biochemistry 1998;37(37):12852-9
  • Kelley RW, Reed JR, Backes WL. Effect of ionic strength on the functional interactions between CYP2B4 and CYP1A2. Biochemistry 2005;44(7):2632-41
  • Kelley RW, Cheng DM, Backes WL. Heteromeric complex formation between CYP2E1 and CYP1A2: evidence for the involvement of electrostatic interactions. Biochemistry 2006;45(51):15807-16
  • Backes WL, Kelley RW. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharm Ther 2003;98(2):221-33
  • Ravichandran KG, Boddupalli SS, Hasermann CA, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450′s. Science 1993;261(5122):731-6
  • Williams PA, Cosme J, Ward A, Crystal structure of human cytochrome P4502C9 with bound warfarin. Nature 2003;424(6947):464-8
  • Podust LM, Kim Y, Arase M, The 1.92-angstrom structure of Streptomyces coelicolor A3(2) CYP154C1 – A new monooxygenase that functionalizes macrolide ring systems. J Biol Chem 2003;278(14):12214-21
  • Hazai E, Bika Z, Simonyi M, Association of cytochrome P450 enzymes is a determining factor in their catalytic activity. J Comput Aided Mol Des 2005;19:271-85
  • Davydov DR, Halpert JR. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 2008;4(12):1523-35
  • Denisov IG, Frank DJ, Sligar SG. Cooperative properties of cytochromes P450. Pharmacol Ther 2009;124(2):151-67
  • Koley AP, Buters JTM, Robinson RC, Differential mechanisms of cytochrome P450 inhibition and activation by alpha-naphthoflavone. J Biol Chem 1997;272(6):3149-52
  • Koley AP, Robinson RC, Markowitz A, Drug-drug interactions: effect of quinidine on nifedipine binding to human cytochrome P450 3A4. Biochem Pharm 1997;53(4):455-60
  • Schoch GA, Yano JK, Wester MR, Structure of human microsomal cytochrome P4502C8 – Evidence for a peripheral fatty acid binding site. J Biol Chem 2004;279(10):9497-503
  • Williams PA, Cosme J, Vinkovic DM, Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004;305(5684):683-6
  • Tsalkova TN, Davydova NY, Halpert JR, Mechanism of interactions of alpha-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Biochemistry 2007;46(1):106-19
  • Davydov DR, Davydova NY, Tsalkova TN, Effect of glutathione on homo- and heterotropic cooperativity in cytochrome P450 3A4. Arch Biochem Biophys 2008;471(2):134-45
  • Backes WL, Eyer CS. Cytochrome P-450 LM2 reduction. Substrate effects on the rate of reductase-LM2 association. J Biol Chem 1989;264(11):6252-9
  • Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharm 2004;199(3):316-31
  • Tan Y, Patten CJ, Smith T, Yang CS. Competitive interactions between cytochromes P450 2A6 and 2E1 for NADPH-cytochrome P450 oxidoreductase in the microsomal membranes produced by a baculovirus expression system. Arch Biochem Biophys 1997;342(1):82-91
  • Greenblatt DJ, Venkatakrishnan K, Harmatz JS, Sources of variability in ketoconazole inhibition of human cytochrome P450 3A in vitro. Xenobiotica 2010;40(10):713-20
  • Isoherranen N, Ludington SR, Givens RC, The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos 2008;36(1):146-54
  • Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004;57(4):473-86
  • Henshall J, Galetin A, Harrison A, Comparative analysis of CYP3A heteroactivation by steroid hormones and flavonoids in different in vitro systems and potential in vivo implications. Drug Metab Dispos 2008;36(7):1332-40
  • Hallifax D, Houston JB. Methodological uncertainty in quantitative prediction of human hepatic clearance from in vitro experimental systems. Curr Drug Metab 2009;10(3):307-21
  • Gibbs MA, Thummel KE, Shen DD, Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of K-I values and impact of CYP3A5 expression. Drug Metab Dispos 1999;27(2):180-7
  • Niwa T, Murayama N, Yamazaki H. Comparison of the contributions of cytochromes P450 3A4 and 3A5 in drug oxidation rates and substrate inhibition. J Health Sci 2010;56(3):239-56
  • Reed JR, Eyer M, Backes WL. Drug-metabolizing enzymes: if they work together, they should be tested together. Pharmacogenomics 2010;11(5):672
  • Niwa T, Murayama N, Emoto C, Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab 2008;9(1):20-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.