886
Views
100
CrossRef citations to date
0
Altmetric
Reviews

Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance?

, , , , , & (Professor) show all
Pages 623-642 | Published online: 17 Mar 2011

Bibliography

  • Jemal A, Siegel R, Ward E, Cancer statistics, 2009. CA Cancer J Clin 2009;59(4):225-49
  • Szakacs G, Paterson JK, Ludwig JA, Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5(3):219-34
  • Sawyers C. Targeted cancer therapy. Nature 2004;432(7015):294-7
  • Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 2010;9:75
  • Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician 2008;77(3):311-19
  • Hopper-Borge EA, Nasto RE, Ratushny V, Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets 2009;13(3):339-62
  • Valent P. Imatinib-resistant chronic myeloid leukemia (CML): current concepts on pathogenesis and new emerging pharmacologic approaches. Biologics 2007;1(4):433-48
  • Davidson AL, Dassa E, Orelle C, Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008;72(2):317-64, table of contents
  • Szakacs G, Varadi A, Ozvegy-Laczka C, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today 2008;13(9-10):379-93
  • Glavinas H, Krajcsi P, Cserepes J, The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 2004;1(1):27-42
  • Stavrovskaya AA, Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc) 2008;73(5):592-604
  • Hollo Z, Homolya L, Hegedus T, Parallel functional and immunological detection of human multidrug resistance proteins, P-glycoprotein and MRP1. Anticancer Res 1998;18(4C):2981-7
  • Sarkadi B, Homolya L, Szakacs G, Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006;86(4):1179-236
  • Poguntke M, Hazai E, Fromm MF, Drug transport by breast cancer resistance protein. Expert Opin Drug Metab Toxicol 2010;6(11):1363-84
  • Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta 2009;1794(5):725-37
  • Sarkadi B, Muller M, Hollo Z. The multidrug transporters–proteins of an ancient immune system. Immunol Lett 1996;54(2-3):215-19
  • Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 2003;52(12):1788-95
  • Meijerman I, Beijnen JH, Schellens JH. Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat Rev 2008;34(6):505-20
  • Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 2006;6(12):947-60
  • Hegedus C, Szakacs G, Homolya L, Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv Drug Deliv Rev 2009;61(1):47-56
  • Telbisz A, Muller M, Ozvegy-Laczka C, Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta 2007;1768(11):2698-713
  • Katona M, Kiss K, Angyal V, A mass spectrometry based functional assay for the quantitative assessment of ABC transporter activity. Rapid Commun Mass Spectrom 2009;23(21):3372-6
  • Brimacombe KR, Hall MD, Auld DS, A dual-fluorescence high-throughput cell line system for probing multidrug resistance. Assay Drug Dev Technol 2009;7(3):233-49
  • Gandhi YA, Morris ME. Structure-activity relationships and quantitative structure-activity relationships for breast cancer resistance protein (ABCG2). AAPS J 2009;11(3):541-52
  • Tang C, Prueksaritanont T. Use of in vivo animal models to assess pharmacokinetic drug-drug interactions. Pharm Res 2010;27(9):1772-87
  • Lin JH. Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab 2008;9(5):419-38
  • Baltes S, Gastens AM, Fedrowitz M, Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 2007;52(2):333-46
  • Ito K. ABCC2/Abcc2 transport property in different species and its modulation by heterogeneous factors. Drug Metab Pharmacokinet 2008;23(6):394-405
  • Kawase A, Matsumoto Y, Hadano M, Differential effects of chrysin on nitrofurantoin pharmacokinetics mediated by intestinal breast cancer resistance protein in rats and mice. J Pharm Pharm Sci 2009;12(2):150-63
  • Li N, Palandra J, Nemirovskiy OV, LC-MS/MS mediated absolute quantification and comparison of bile salt export pump and breast cancer resistance protein in livers and hepatocytes across species. Anal Chem 2009;81(6):2251-9
  • Zimmermann C, van de Wetering K, van de Steeg E, Species-dependent transport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2). Drug Metab Dispos 2008;36(4):631-40
  • Hegedus C, Ozvegy-Laczka C, Szakacs G, Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors? Curr Cancer Drug Targets 2009;9(3):252-72
  • Lemos C, Jansen G, Peters GJ. Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 2008;98(5):857-62
  • Turk D, Szakacs G. Relevance of multidrug resistance in the age of targeted therapy. Curr Opin Drug Discov Devel 2009;12(2):246-52
  • Wang XK, Fu LW. Interaction of tyrosine kinase inhibitors with the MDR- related ABC transporter proteins. Curr Drug Metab 2010;11(7):618-28
  • Hegedus C, Ozvegy-Laczka C, Apati A, Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol 2009;158(4):1153-64
  • Hegedus T, Orfi L, Seprodi A, Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 2002;1587(2-3):318-25
  • Ozvegy-Laczka C, Hegedus T, Varady G, High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 2004;65(6):1485-95
  • Polli JW, Humphreys JE, Harmon KA, The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos 2008;36(4):695-701
  • Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters, OCTs, and multidrug and toxic compound extrusion proteins, MATEs. Mol Cancer Ther 2011. [Epub ahead of print]
  • van Erp NP, Eechoute K, van der Veldt AA, Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 2009;27(26):4406-12
  • Druker BJ, Guilhot F, O'Brien SG, Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355(23):2408-17
  • Bradeen HA, Eide CA, O'Hare T, Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006;108(7):2332-8
  • Shukla S, Sauna ZE, Ambudkar SV. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia 2008;22(2):445-7
  • Brendel C, Scharenberg C, Dohse M, Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007;21(6):1267-75
  • Burger H, van Tol H, Boersma AW, Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004;104(9):2940-2
  • Giannoudis A, Davies A, Lucas CM, Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood 2008;112(8):3348-54
  • Hamada A, Miyano H, Watanabe H, Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 2003;307(2):824-8
  • Illmer T, Schaich M, Platzbecker U, P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004;18(3):401-8
  • Thomas J, Wang L, Clark RE, Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004;104(12):3739-45
  • White DL, Saunders VA, Dang P, OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006;108(2):697-704
  • Kotaki M, Motoji T, Takanashi M, Anti-proliferative effect of the abl tyrosine kinase inhibitor STI571 on the P-glycoprotein positive K562/ADM cell line. Cancer Lett 2003;199(1):61-8
  • Dohse M, Scharenberg C, Shukla S, Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos 2010;38(8):1371-80
  • Nakanishi T, Shiozawa K, Hassel BA, Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 2006;108(2):678-84
  • Houghton PJ, Germain GS, Harwood FC, Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 2004;64(7):2333-7
  • Pick A, Klinkhammer W, Wiese M. Specific inhibitors of the breast cancer resistance protein (BCRP). ChemMedChem 2010;5(9):1498-505
  • Tamura A, Onishi Y, An R, In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab Pharmacokinet 2007;22(6):428-40
  • Hiwase DK, Saunders V, Hewett D, Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 2008;14(12):3881-8
  • Mahon FX, Hayette S, Lagarde V, Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 2008;68(23):9809-16
  • Haouala A, Rumpold H, Untergasser G, siRNA-mediated knock-down of P-glycoprotein expression reveals distinct cellular disposition of anticancer tyrosine kinases inhibitors. Drug Metab Lett 2010;4(2):114-19
  • Kitazaki T, Oka M, Nakamura Y, Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 2005;49(3):337-43
  • Elkind NB, Szentpetery Z, Apati A, Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 2005;65(5):1770-7
  • Yanase K, Tsukahara S, Asada S, Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 2004;3(9):1119-25
  • Leggas M, Panetta JC, Zhuang Y, Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 2006;66(9):4802-7
  • Li J, Cusatis G, Brahmer J, Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 2007;6(3):432-8
  • Nakamura Y, Oka M, Soda H, Gefitinib ("Iressa", ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 2005;65(4):1541-6
  • Stewart CF, Leggas M, Schuetz JD, Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 2004;64(20):7491-9
  • Dai CL, Tiwari AK, Wu CP, Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 2008;68(19):7905-14
  • Marchetti S, de Vries NA, Buckle T, Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 2008;7(8):2280-7
  • Shi Z, Peng XX, Kim IW, Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 2007;67(22):11012-20
  • Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007;25(7):884-96
  • Sulkes A. Novel multitargeted anticancer oral therapies: sunitinib and sorafenib as a paradigm. Isr Med Assoc J 2010;12(10):628-32
  • Hu S, Chen Z, Franke R, Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 2009;15(19):6062-9
  • Lagas JS, van Waterschoot RA, Sparidans RW, Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther 2010;9(2):319-26
  • Shukla S, Robey RW, Bates SE, Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 2009;37(2):359-65
  • McDowell HP, Meco D, Riccardi A, Imatinib mesylate potentiates topotecan antitumor activity in rhabdomyosarcoma preclinical models. Int J Cancer 2007;120(5):1141-9
  • Mukai M, Che XF, Furukawa T, Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci 2003;94(6):557-63
  • Tiwari AK, Sodani K, Wang SR, Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 2009;78(2):153-61
  • Noguchi K, Kawahara H, Kaji A, Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 2009;100(9):1701-7
  • Shi Z, Parmar S, Peng XX, The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance. Oncol Rep 2009;21(2):483-9
  • Dai CL, Liang YJ, Wang YS, Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett 2009;279(1):74-83
  • Weisberg E, Catley L, Wright RD, Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood 2007;109(5):2112-20
  • White DL, Saunders VA, Quinn SR, Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood 2007;109(8):3609-10
  • Visentin M, Biason P, Toffoli G. Drug interactions among the epidermal growth factor receptor inhibitors, other biologics and cytotoxic agents. Pharmacol Ther 2010;128(1):82-90
  • Veronese ML, Sun W, Giantonio B, A phase II trial of gefitinib with 5-fluorouracil, leucovorin, and irinotecan in patients with colorectal cancer. Br J Cancer 2005;92(10):1846-9
  • Deenik W, Janssen JJ, van der Holt B, Efficacy of escalated imatinib combined with cytarabine in newly diagnosed patients with chronic myeloid leukemia. Haematologica 2009;95(6):914-21
  • Haouala A, Widmer N, Duchosal MA, Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood 2010. [Epub ahead of print]
  • Bihorel S, Camenisch G, Lemaire M, Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood-brain barrier. J Neurochem 2007;102(6):1749-57
  • Bihorel S, Camenisch G, Lemaire M, Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 2007;24(9):1720-8
  • Dai H, Marbach P, Lemaire M, Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003;304(3):1085-92
  • Zhou L, Schmidt K, Nelson FR, The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 2009;37(5):946-55
  • Breedveld P, Pluim D, Cipriani G, The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005;65(7):2577-82
  • Gardner ER, Smith NF, Figg WD, Influence of the dual ABCB1 and ABCG2 inhibitor tariquidar on the disposition of oral imatinib in mice. J Exp Clin Cancer Res 2009;28:99
  • Oostendorp RL, Buckle T, Beijnen JH, The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs 2009;27(1):31-40
  • Lagas JS, van Waterschoot RA, van Tilburg VA, Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res 2009;15(7):2344-51
  • Chen Y, Agarwal S, Shaik NM, P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 2009;330(3):956-63
  • Agarwal S, Sane R, Gallardo JL, Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 334(1):147-55
  • Kawamura K, Yamasaki T, Yui J, In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl Med Biol 2009;36(3):239-46
  • de Vries NA, Buckle T, Zhao J, Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs 2010. [Epub ahead of print]
  • Polli JW, Olson KL, Chism JP, An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 2009;37(2):439-42
  • Carcaboso AM, Elmeliegy MA, Shen J, Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res 2010;70(11):4499-508
  • Gardner ER, Burger H, van Schaik RH, Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 2006;80(2):192-201
  • Gurney H, Wong M, Balleine RL, Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 2007;82(1):33-40
  • Petain A, Kattygnarath D, Azard J, Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 2008;14(21):7102-9
  • Dulucq S, Bouchet S, Turcq B, Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2008;112(5):2024-7
  • Akasaka K, Kaburagi T, Yasuda S, Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non-small-cell lung cancer. Cancer Chemother Pharmacol 66(4):691-8
  • Cusatis G, Gregorc V, Li J, Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 2006;98(23):1739-42
  • Rudin CM, Liu W, Desai A, Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol 2008;26(7):1119-27
  • Takahashi N, Miura M, Scott SA, Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 2010;55(11):737-7
  • Karaszi E, Jakab K, Homolya L, Calcein assay for multidrug resistance reliably predicts therapy response and survival rate in acute myeloid leukaemia. Br J Haematol 2001;112(2):308-14
  • Daood M, Tsai C, Ahdab-Barmada M, ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 2008;39(4):211-18
  • Cohen MH, Williams GA, Sridhara R, United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res 2004;10(4):1212-18
  • Kamath AV, Wang J, Lee FY, Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol 2008;61(3):365-76
  • Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005;44(9):879-94
  • Gschwind HP, Pfaar U, Waldmeier F, Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 2005;33(10):1503-12
  • Ling J, Johnson KA, Miao Z, Metabolism and excretion of erlotinib, a small molecule inhibitor of epidermal growth factor receptor tyrosine kinase, in healthy male volunteers. Drug Metab Dispos 2006;34(3):420-6
  • Decleves X, Bihorel S, Debray M, ABC transporters and the accumulation of imatinib and its active metabolite CGP74588 in rat C6 glioma cells. Pharmacol Res 2008;57(3):214-22
  • van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 2009;35(8):692-706
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730-7
  • Reya T, Morrison SJ, Clarke MF, Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105-11
  • Dick JE. Stem cell concepts renew cancer research. Blood 2008;112(13):4793-807
  • Regenbrecht CR, Lehrach H, Adjaye J. Stemming cancer: functional genomics of cancer stem cells in solid tumors. Stem Cell Rev 2008;4(4):319-28
  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008;8(10):755-68
  • Jordan CT. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 2009;4(3):203-5
  • Zhou BB, Zhang H, Damelin M, Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009;8(10):806-23
  • Bao S, Wu Q, McLendon RE, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444(7120):756-60
  • Hambardzumyan D, Becher OJ, Holland EC. Cancer stem cells and survival pathways. Cell Cycle 2008;7(10):1371-8
  • Bleau AM, Hambardzumyan D, Ozawa T, PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 2009;4(3):226-35
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5(4):275-84
  • Hirschmann-Jax C, Foster AE, Wulf GG, A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004;101(39):14228-33
  • Sarkadi B, Szakacs G. Understanding transport through pharmacological barriers–are we there yet? Nat Rev Drug Discov 2010;9(11):897-8
  • Zhou S, Schuetz JD, Bunting KD, The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001;7(9):1028-34
  • Turk D, Hall MD, Chu BF, Identification of compounds selectively killing multidrug-resistant cancer cells. Cancer Res 2009;69(21):8293-301
  • Ludwig JA, Szakacs G, Martin SE, Selective toxicity of NSC73306 in MDR1-positive cells as a new strategy to circumvent multidrug resistance in cancer. Cancer Res 2006;66(9):4808-15
  • Allen JD, Brinkhuis RF, Wijnholds J, The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 1999;59(17):4237-41
  • Knutsen T, Rao VK, Ried T, Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer 2000;27(1):110-16
  • Rao VK, Wangsa D, Robey RW, Characterization of ABCG2 gene amplification manifesting as extrachromosomal DNA in mitoxantrone-selected SF295 human glioblastoma cells. Cancer Genet Cytogenet 2005;160(2):126-33
  • Huff LM, Wang Z, Iglesias A, Aberrant transcription from an unrelated promoter can result in MDR-1 expression following drug selection in vitro and in relapsed lymphoma samples. Cancer Res 2005;65(24):11694-703
  • Huff LM, Lee JS, Robey RW, Characterization of gene rearrangements leading to activation of MDR-1. J Biol Chem 2006;281(48):36501-9
  • Knutsen T, Mickley LA, Ried T, Cytogenetic and molecular characterization of random chromosomal rearrangements activating the drug resistance gene, MDR1/P-glycoprotein, in drug-selected cell lines and patients with drug refractory ALL. Genes Chromosomes Cancer 1998;23(1):44-54
  • Mickley LA, Spengler BA, Knutsen TA, Gene rearrangement: a novel mechanism for MDR-1 gene activation. J Clin Invest 1997;99(8):1947-57
  • Haslam IS, Jones K, Coleman T, Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol 2008;154(1):246-55
  • Hu XF, Slater A, Rischin D, Induction of MDR1 gene expression by anthracycline analogues in a human drug resistant leukaemia cell line. Br J Cancer 1999;79(5-6):831-7
  • Hu XF, Slater A, Wall DM, Rapid up-regulation of mdr1 expression by anthracyclines in a classical multidrug-resistant cell line. Br J Cancer 1995;71(5):931-6
  • Ichihashi N, Kitajima Y. Chemotherapy induces or increases expression of multidrug resistance-associated protein in malignant melanoma cells. Br J Dermatol 2001;144(4):745-50
  • Kohno K, Sato S, Takano H, The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun 1989;165(3):1415-21
  • Nielsen D, Eriksen J, Maare C, P-glycoprotein expression in Ehrlich ascites tumour cells after in vitro and in vivo selection with daunorubicin. Br J Cancer 1998;78(9):1175-80
  • Baker EK, Johnstone RW, Zalcberg JR, Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene 2005;24(54):8061-75
  • Bram EE, Stark M, Raz S, Chemotherapeutic drug-induced ABCG2 promoter demethylation as a novel mechanism of acquired multidrug resistance. Neoplasia 2009;11(12):1359-70
  • Calcagno AM, Fostel JM, To KK, Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. Br J Cancer 2008;98(9):1515-24
  • El-Osta A, Kantharidis P, Zalcberg JR, Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol 2002;22(6):1844-57
  • Kusaba H, Nakayama M, Harada T, Association of 5′ CpG demethylation and altered chromatin structure in the promoter region with transcriptional activation of the multidrug resistance 1 gene in human cancer cells. Eur J Biochem 1999;262(3):924-32
  • To KK, Polgar O, Huff LM, Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res 2008;6(1):151-64
  • Hauswald S, Duque-Afonso J, Wagner MM, Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res 2009;15(11):3705-15
  • Eyal S, Lamb JG, Smith-Yockman M, The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol 2006;149(3):250-60
  • Chen T. Nuclear receptor drug discovery. Curr Opin Chem Biol 2008;12(4):418-26
  • Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001;7(5):584-90
  • Burk O, Arnold KA, Geick A, A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol Chem 2005;386(6):503-13
  • Bauer B, Hartz AM, Lucking JR, Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab 2008;28(6):1222-34
  • Fardel O, Jigorel E, Le Vee M, Physiological, pharmacological and clinical features of the multidrug resistance protein 2. Biomed Pharmacother 2005;59(3):104-14
  • Kast HR, Goodwin B, Tarr PT, Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002;277(4):2908-15
  • Kauffmann HM, Pfannschmidt S, Zoller H, Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology 2002;171(2-3):137-46
  • Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol Pharmacol 2010;78(3):376-83
  • Ee PL, Kamalakaran S, Tonetti D, Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 2004;64(4):1247-51
  • Szatmari I, Vamosi G, Brazda P, Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem 2006;281(33):23812-23
  • Wang H, Lee EW, Zhou L, Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol Pharmacol 2008;73(3):845-54
  • Tan KP, Wang B, Yang M, Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol 2010;78(2):175-85
  • Tompkins LM, Li H, Li L, A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem Pharmacol 2010;80(11):1754-61
  • Annereau JP, Szakacs G, Tucker CJ, Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. Mol Pharmacol 2004;66(6):1397-405
  • Harmsen S, Meijerman I, Febus CL, PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol 2009;66(4):765-71
  • Chen Y, Tang Y, Wang MT, Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res 2007;67(21):10361-7
  • Gupta D, Venkatesh M, Wang H, Expanding the roles for pregnane X receptor in cancer: proliferation and drug resistance in ovarian cancer. Clin Cancer Res 2008;14(17):5332-40
  • Harmsen S, Meijerman I, Beijnen JH, Nuclear receptor mediated induction of cytochrome P450 3A4 by anticancer drugs: a key role for the pregnane X receptor. Cancer Chemother Pharmacol 2009;64(1):35-43
  • Agrawal M, Garg RJ, Kantarjian H, Chronic myeloid leukemia in the tyrosine kinase inhibitor era: what is the "best" therapy? Curr Oncol Rep 2010;12(5):302-13
  • Milojkovic D, Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res 2009;15(24):7519-27
  • Usuda J, Ohira T, Suga Y, Breast cancer resistance protein (BCRP) affected acquired resistance to gefitinib in a "never-smoked" female patient with advanced non-small cell lung cancer. Lung Cancer 2007;58(2):296-9
  • Jiang X, Zhao Y, Smith C, Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007;21(5):926-35
  • Jordanides NE, Jorgensen HG, Holyoake TL, Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006;108(4):1370-3
  • Mahon FX, Deininger MW, Schultheis B, Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000;96(3):1070-9
  • Burger H, van Tol H, Brok M, Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 2005;4(7):747-52
  • Zhang WW, Cortes JE, Yao H, Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance. J Clin Oncol 2009;27(22):3642-9
  • Abolhoda A, Wilson AE, Ross H, Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 1999;5(11):3352-6
  • Di Nicolantonio F, Mercer SJ, Knight LA, Cancer cell adaptation to chemotherapy. BMC Cancer 2005;5:78
  • Hu XF, Slater A, Kantharidis P, Altered multidrug resistance phenotype caused by anthracycline analogues and cytosine arabinoside in myeloid leukemia. Blood 1999;93(12):4086-95
  • Stein U, Jurchott K, Schlafke M, Expression of multidrug resistance genes MVP, MDR1, and MRP1 determined sequentially before, during, and after hyperthermic isolated limb perfusion of soft tissue sarcoma and melanoma patients. J Clin Oncol 2002;20(15):3282-92
  • Tada Y, Wada M, Kuroiwa K, MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res 2000;6(12):4618-27
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009;3(3):281-90
  • Fletcher JI, Haber M, Henderson MJ, ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010;10(2):147-56
  • Baker SD, Hu S. Pharmacokinetic considerations for new targeted therapies. Clin Pharmacol Ther 2009;85(2):208-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.