926
Views
65
CrossRef citations to date
0
Altmetric
Reviews

Profound changes in drug metabolism enzymes and possible effects on drug therapy in neonates and children

, MD PhD (Pediatric Intensivist, Clinical Pharmacologist)
Pages 935-948 | Published online: 08 May 2011

Bibliography

  • Strolin Benedetti M, Whomsley R, Baltes EL. Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin Drug Metab Toxicol 2005;1:447-71
  • Kearns GL, Abdel-Rahman SM, Alander SW, Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 2003;349:1157-67
  • Holford N. Dosing in children. Clin Pharmacol Ther 2010;87:367-70
  • Sutherland JM. Fatal cardiovascular collaps of infants receiving large amounts of chloramphenicol. AMA J Dis Child 1959;97:761-7
  • Weiss CF, Glazko AJ, Weston JK. Chloramphenicol in the newborn infant. A physiological explanation of its toxicity when given in excessive doses. N Engl J Med 1960;262:787-94
  • Chen M, LeDuc B, Kerr S, Identification of human UGT2B7 as the major isoform involved in the O-glucuronidation of chloramphenicol. Drug Metab Dispos 2010;38:368-75
  • Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 2008;118:250-67
  • de Wildt SN, Ito S, Koren G. Challenges for drug studies in children: CYP3A phenotyping as example. Drug Discov Today 2009;14:6-15
  • Cupp MJ, Tracy TS. Cytochrome P450: new nomenclature and clinical implications. Am Fam Physician 1998;57:107-16
  • Committee HCPCAN. Human Cytochrome P450 (CYP) Allele Nomenclature. Available from: http://www.cypalleles.ki.se/. [Cited 12 January 2010]
  • Johansson I, Ingelman-Sundberg M. Genetic polymorphism and toxicology–with emphasis on cytochrome p450. Toxicol Sci 2011;120:1-13
  • Wild MJ, McKillop D, Butters CJ. Determination of the human cytochrome P450 isoforms involved in the metabolism of zolmitriptan. Xenobiotica 1999;29:847-57
  • Rasmussen BB, Brosen K. Determination of urinary metabolites of caffeine for the assessment of cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activity in humans. Ther Drug Monit 1996;18:254-62
  • Pirmohamed M, Williams D, Madden S, Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmacol Exp Ther 1995;272:984-90
  • Ha HR, Chen J, Freiburghaus AU, Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol 1995;39:321-6
  • Braam W, van Geijlswijk I, Keijzer H, Loss of response to melatonin treatment is associated with slow melatonin metabolism. J Intellect Disabil Res 2010;54:547-55
  • Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 1998;251:893-8
  • Cazeneuve C, Pons G, Rey E, Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and adults. Br J Clin Pharmacol 1994;377:405-12
  • Pariente-Khayat A, Pons G, Rey E, Caffeine acetylator phenotyping during maturation in infants. Pediatr Res 1991;29:492-5
  • Blake MJ, Abdel-Rahman SM, Pearce RE, Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatr Res 2006;60:717-23
  • Charles BG, Townsend SR, Steer PA, Caffeine citrate treatment for extremely premature infants with apnea: population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Ther Drug Monit 2008;30:709-16
  • Akinyinka OO, Sowunmi A, Honeywell R, The pharmacokinetics of caffeine in Nigerian children suffering from malaria and kwashiorkor. Eur J Clin Pharmacol 2000;56:153-8
  • Kennedy MJ, Davis DA, Smith N, Reduced activities of cytochrome P450 1A2 and xanthine oxidase in children with growth hormone deficiency. Clin Pharmacol Ther 2008;84:674-8
  • Kennedy MJ, Davis DA, Smith N, Six-month, prospective, longitudinal, open-label caffeine and dextromethorphan phenotyping study in children with growth hormone deficiency receiving recombinant human growth hormone replacement. Clin Ther 2008;30:1687-99
  • Kennedy MJ, Scripture CD, Kashuba AD, Activities of cytochrome P450 1A2, N-acetyltransferase 2, xanthine oxidase, and cytochrome P450 2D6 are unaltered in children with cystic fibrosis. Clin Pharmacol Ther 2004;75:163-71
  • Haas DW, Ribaudo HJ, Kim RB, Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 2004;18:2391-400
  • Faucette SR, Hawke RL, Lecluyse EL, Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 2000;28:1222-30
  • Granvil CP, Madan A, Sharkawi M, Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. Drug Metab Dispos 1999;27:533-41
  • Totah RA, Sheffels P, Roberts T, Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology 2008;108:363-74
  • Chang TK, Weber GF, Crespi CL, Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993;53:5629-37
  • Croom EL, Stevens JC, Hines RN, Human hepatic CYP2B6 developmental expression: the impact of age and genotype. Biochem Pharmacol 2009;78:184-90
  • Hussain T, Ewer AK. Maternal methadone may cause arrhythmias in neonates. Acta Paediatr 2007;96:768-9
  • Bunten H, Liang WJ, Pounder DJ, OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths. Clin Pharmacol Ther 2010;88:383-9
  • Ward BA, Gorski JC, Jones DR, The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 2003;306:287-300
  • ter Heine R, Scherpbier HJ, Crommentuyn KM, A pharmacokinetic and pharmacogenetic study of efavirenz in children: dosing guidelines can result in subtherapeutic concentrations. Antivir Ther 2008;13:779-87
  • Fletcher CV, Brundage RC, Fenton T, Pharmacokinetics and pharmacodynamics of efavirenz and nelfinavir in HIV-infected children participating in an area-under-the-curve controlled trial. Clin Pharmacol Ther 2008;83:300-6
  • Rokitta D, Fuhr U. Comparison of enzyme kinetic parameters obtained in vitro for reactions mediated by human CYP2C enzymes including major CYP2C9 variants. Curr Drug Metab 2010;11:153-61
  • Transon C, Leemann T, Vogt N, In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (+/-)-fluvastatin. Clin Pharmacol Ther 1995;58:412-17
  • Leemann T, Kondo M, Zhao J, The biotransformation of NSAIDs: a common elimination site and drug interactions. Schweiz Med Wochenschr 1992;122:1897-9
  • Miners JO, Coulter S, Tukey RH, Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 1996;51:1003-8
  • Veronese ME, Mackenzie PI, Doecke CJ, Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochem Biophys Res Commun 1991;175:1112-18
  • Kunze KL, Wienkers LC, Thummel KE, Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996;24:414-21
  • Sohn DR, Kwon JT, Kim HK, Metabolic disposition of lansoprazole in relation to the S-mephenytoin 4'-hydroxylation phenotype status. Clin Pharmacol Ther 1997;61:574-82
  • Yasumori T, Nagata K, Yang SK, Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner. Pharmacogenetics 1993;3:291-301
  • Lillibridge JH, Liang BH, Kerr BM, Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 1998;26:609-16
  • Andersson T, Cederberg C, Edvardsson G, Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 1990;47:79-85
  • Tanaka M, Ohkubo T, Otani K, Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to S-mephenytoin 4'-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997;62:619-28
  • Koukouritaki SB, Manro JR, Marsh SA, Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 2004;308:965-74
  • Treluyer JM, Benech H, Colin I, Ontogenesis of CYP2C-dependent arachidonic acid metabolism in the human liver: relationship with sudden infant death syndrome. Pediatr Res 2000;47:677-83
  • Beurton F, Gueret G, Horisberger M, Transcriptional activation of CYP2C, MxA and Fas in sudden infant death syndrome. Int J Mol Med 1999;3:33-9
  • Gregoire N, Desfrere L, Roze JC, Population pharmacokinetic analysis of Ibuprofen enantiomers in preterm newborn infants. J Clin Pharmacol 2008;48:1460-8
  • Durrmeyer X, Hovhannisyan S, Medard Y, Are cytochrome P450 CYP2C8 and CYP2C9 polymorphisms associated with ibuprofen response in very preterm infants? PLoS One 2010;5:e12329
  • Hamman MA, Thompson GA, Hall SD. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 1997;54:33-41
  • Takahashi H, Ishikawa S, Nomoto S, Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Clin Pharmacol Ther 2000;68:541-55
  • Ruud E, Holmstrom H, Bergan S, Oral anticoagulation with warfarin is significantly influenced by steroids and CYP2C9 polymorphisms in children with cancer. Pediatr Blood Cancer 2008;50:710-13
  • Kondo T, Kaneko S, Otani K, Associations between risk factors for valproate hepatotoxicity and altered valproate metabolism. Epilepsia 1992;33:172-7
  • Litalien C, Theoret Y, Faure C. Pharmacokinetics of proton pump inhibitors in children. Clin Pharmacokinet 2005;44:441-66
  • Ward RM, Kearns GL, Tammara B, A multicenter, randomized, open-label, pharmacokinetics and safety study of pantoprazole tablets in children and adolescents aged 6 through 16 years with gastroesophageal reflux disease. J Clin Pharmacol 17 September 2010. [Epub ahead of print]
  • Pettersen G, Mouksassi MS, Theoret Y, Population pharmacokinetics of intravenous pantoprazole in paediatric intensive care patients. Br J Clin Pharmacol 2009;67:216-27
  • Kearns GL, Leeder JS, Gaedigk A. Impact of the CYP2C19*17 allele on the pharmacokinetics of omeprazole and pantoprazole in children: evidence for a differential effect. Drug Metab Dispos 2010;38:894-7
  • Ward RM, Tammara B, Sullivan SE, Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur J Clin Pharmacol 2010;66:555-61
  • Ward RM, Tammara B, Sullivan SE, Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur J Clin Pharmacol 2010;66:555-61
  • Leeder JS, Kearns GL, Spielberg SP, Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol 2010;50:1377-87
  • Akutsu T, Kobayashi K, Sakurada K, Identification of human cytochrome p450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 2007;35:72-8
  • Desmeules J, Gascon MP, Dayer P, Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991;41:23-6
  • Perault MC, Bouquet S, Bertschy G, Debrisoquine and dextromethorphan phenotyping and antidepressant treatment. Therapie 1991;46:1-3
  • Llerena A, Dahl ML, Ekqvist B, Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype: increased plasma levels of the reduced metabolite in poor metabolizers. Ther Drug Monit 1992;14:261-4
  • Lennard MS, Tucker GT, Silas JH, Debrisoquine polymorphism and the metabolism and action of metoprolol, timolol, propranolol and atenolol. Xenobiotica 1986;16:435-47
  • Jacqz-Aigrain E, Cresteil T. Cytochrome P450-dependent metabolism of dextromethorphan: fetal and adult studies. Dev Pharmacol Ther 1992;18:161-8
  • Stevens JC, Marsh SA, Zaya MJ, Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos 2008;36:1587-93
  • Blake MJ, Gaedigk A, Pearce RE, Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 2007;81:510-16
  • Johnson TN, Tucker GT, Rostami-Hodjegan A. Development of CYP2D6 and CYP3A4 in the First Year of Life. Clin Pharmacol Ther 2007;83:670-1
  • Allegaert K, Rochette A, Veyckemans F. Developmental pharmacology of tramadol during infancy: ontogeny, pharmacogenetics and elimination clearance. Paediatr Anaesth 2011;21:266-73
  • Merenstein D, Diener-West M, Halbower AC, The trial of infant response to diphenhydramine: the TIRED study – a randomized, controlled, patient-oriented trial. Arch Pediatr Adolesc Med 2006;160:707-12
  • Roehrs T, Zwyghuizen-Doorenbos A, Roth T. Sedative effects and plasma concentrations following single doses of triazolam, diphenhydramine, ethanol and placebo. Sleep 1993;16:301-5
  • Albers S, Meibohm B, Mir TS, Population pharmacokinetics and dose simulation of carvedilol in paediatric patients with congestive heart failure. Br J Clin Pharmacol 2008;65:511-22
  • Gasche Y, Daali Y, Fathi M, Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 2004;351:2827-31
  • Brousseau DC, McCarver DG, Drendel AL, The effect of CYP2D6 polymorphisms on the response to pain treatment for pediatric sickle cell pain crisis. J Pediatr 2007;150:623-6
  • Williams DG, Patel A, Howard RF. Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth 2002;89:839-45
  • Ciszkowski C, Madadi P, Phillips MS, Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 2009;361:827-8
  • Madadi P, Hildebrandt D, Gong IY, Fatal hydrocodone overdose in a child: pharmacogenetics and drug interactions. Pediatrics 2010;126:e986-9
  • Koren G, Cairns J, Chitayat D, Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006;368:704
  • Shimada T, Yamazaki H, Mimura M, Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver micrsomes of 30 japanese and 30 caucasians. J Pharmacol Exp Ther 1994;270:414-23
  • Xie HG, Wood AJ, Kim RB, Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004;5:243-72
  • Shimada T, Yamazaki H, Mimura M, Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 1996;24:515-22
  • Lacroix D, Sonnier M, Monion A, Expression of CYP3A in the liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 1997;247:625-34
  • Leeder JS, Gaedigk R, Marcucci KA, Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther 2005;314:626-35
  • Sim SC, Edwards RJ, Boobis AR, CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 2005;15:625-31
  • Stevens JC, Hines RN, Gu C, Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 2003;307:573-82
  • Hakkola J, Raunio H, Purkunen R, Cytochrome P450 3A expression in the human fetal liver: evidence that CYP3A5 is expressed in only a limited number of fetal livers. Biol Neonate 2001;80:193-201
  • Kharasch ED, Thummel KE, Watkins PB. CYP3A probes can quantitatively predict the in vivo kinetics of other CYP3A substrates and can accurately assess CYP3A induction and inhibition. Mol Interv 2005;5:151-3
  • de Wildt SN, Berns MJ, van den Anker JN. 13C-erythromycin breath test as a noninvasive measure of CYP3A activity in newborn infants: a pilot study. Ther Drug Monit 2007;29:225-30
  • de Wildt SN, Kearns GL, Hop WC, Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther 2001;70:525-31
  • Burtin P, Jacqz-Aigrain E, Girard P, Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther 1994;56:615-25
  • Reed MD, Rodarte A, Blumer JL, The single-dose pharmacokinetics of midazolam and its primary metabolite in pediatric patients after oral and intravenous administration. J Clin Pharmacol 2001;41:1359-69
  • Smith MT, Eadie MJ, O'Rourke Brophy T. The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 1981;19:271-178
  • Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth 2010;21:302-8
  • Jacqz-Aigrain E, Daoud P, Burtin P, Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet 1994;344:646-50
  • de Wildt SN, de Hoog M, Vinks AA, Pharmacodynamics of midazolam in pediatric intensive care patients. Ther Drug Monit 2005;27:98-102
  • Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr 1991;150:784-8
  • de Gast-Bakker DA, van der Werff SD, Sibarani-Ponsen R, Age is of influence on midazolam requirements in a paediatric intensive care unit. Acta Paediatr 2007;96:414-17
  • Vet NJ, de Hoog M, Tibboel D, The effect of critical illness and inflammation on midazolam therapy in children. Pediatr Crit Care Med 2010. [Epub ahead of print]
  • de Wildt SN, de Hoog M, Vinks AA, Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med 2003;31:1952-8
  • Rey E, Delaunay L, Pons G, Pharmacokinetics of midazolam in children: comparative study of intranasal and intravenous administration. Eur J Clin Pharmacol 1991;41:355-7
  • Payne K, Mattheyse FJ, Liebenberg D, The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol 1989;37(3):267-72
  • de Wildt SN, El-Brojeni PY, Reydman E, Effect of age and genotype on tacrolimus dosing requirements in the immediate post-transplant period in pediatric kidney recipients. Clin Pharmacol Ther 2010;87:S67-7
  • Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2006;2:895-921
  • Sultatos LG, Pastino GM, Rosenfeld CA, Incorporation of the genetic control of alcohol dehydrogenase into a physiologically based pharmacokinetic model for ethanol in humans. Toxicol Sci 2004;78:20-31
  • Smith M, Hopkinson DA, Harris H. Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet 1971;34:251-71
  • Tran MN, Wu AH, Hill DW. Alcohol dehydrogenase and catalase content in perinatal infant and adult livers: potential influence on neonatal alcohol metabolism. Toxicol Lett 2007;169:245-52
  • During R, Wegener R, Kading U, Tocolysis with ethanol--effects on the ethanol content of the blood in the mother and neonate. Zentralbl Gynakol 1990;112:231-5
  • Chikwava K, Lower DR, Frangiskakis SH, Acute ethanol intoxication in a 7-month-old infant. Pediatr Dev Pathol 2004;7:400-2
  • van Ooij C, Snyder RC, Paeper BW, Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein. Mol Cell Biol 1992;12:3023-31
  • Hisamuddin IM, Yang VW. Genetic polymorphisms of human flavin-containing monooxygenase 3: implications for drug metabolism and clinical perspectives. Pharmacogenomics 2007;8.635-43
  • Dolphin CT, Cullingford TE, Shephard EA, Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem 1996;235:683-9
  • Yanni SB, Annaert PP, Augustijns P, In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos 2010;38:25-31
  • de Wildt SN, Kearns GL, Leeder JS, Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 1999;36:439-52
  • Allegaert K, Vanhaesebrouck S, Verbesselt R, In vivo glucuronidation activity of drugs in neonates: extensive interindividual variability despite their young age. Ther Drug Monit 2009;31:411-15
  • Zaya MJ, Hines RN, Stevens JC. Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos 2006;34:2097-101
  • Strassburg CP, Strassburg A, Kneip S, Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 2002;50:259-65
  • Miyagi SJ, Collier AC. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos 2007;35:1587-92
  • Thompson PA, Gupta M, Rosner GL, Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children's oncology group. Cancer Chemother Pharmacol 2008;62:1027-37
  • Sakaguchi S, Garcia-Bournissen F, Kim R, Prolonged neutropenia after irinotecan-based chemotherapy in a child with polymorphisms of UGT1A1 and SLCO1B1. Arch Dis Child 2009;94:981-2
  • Knibbe CA, Krekels EH, van den Anker JN, Morphine glucuronidation in preterm neonates, infants and children younger than 3 years. Clin Pharmacokinet 2009;48:371-85
  • Anand KJ, Anderson BJ, Holford NH, Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth 2008;101:680-9
  • Bouwmeester NJ, Hop WC, van Dijk M, Postoperative pain in the neonate: age-related differences in morphine requirements and metabolism. Intensive Care Med 2003;29:2009-15
  • Johnson TN, Tanner MS, Taylor CJ, Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol 2001;51:451-60
  • Fakhoury M, Litalien C, Medard Y, Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab Dispos 2005;33:1603-7
  • de Wildt SN, Kearns GL, Hop WC, Pharmacokinetics and metabolism of oral midazolam in preterm infants. Br J Clin Pharmacol 2002;53:390-2
  • Loebstein R, Atanackovic G, Bishai R, Risk factors for long-term outcome of ifosfamide-induced nephrotoxicity in children. J Clin Pharmacol 1999;39:454-61
  • Aleksa K, Ito S, Koren G. Renal-tubule metabolism of ifosfamide to the nephrotoxic chloroacetaldehyde: pharmacokinetic modeling for estimation of intracellular levels. J Lab Clin Med 2004;143:159-62
  • Aleksa K, Halachmi N, Ito S, Renal ontogeny of ifosfamide nephrotoxicity. J Lab Clin Med 2004;144:285-93
  • Aleksa K, Matsell D, Krausz K, Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol 2005;20:872-85
  • Ince I, de Wildt SN, Tibboel D, Tailor-made drug treatment for children: creation of an infrastructure for data-sharing and population PK-PD modeling. Drug Discov Today 2009;14:316-20
  • Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 2009;24:25-36
  • Pons G, Blais JC, Rey E, Maturation of caffeine N-demethylation in infancy: a study using the 13CO2 breath test. Pediatr Res 1988;23:632-6
  • Tserng KY, Takieddine FN, King KC. Developmental aspects of theophylline metabolism in premature infants. Clin Pharmacol Ther 1983;33:522-8
  • Alam SN, Roberts RJ, Fischer LJ. Age-related differences in salicylamide and acetaminophen conjugation in man. J Pediatr 1977;90:130-5
  • Herd B, Wynne H, Wright P, The effect of age on glucuronidation and sulphation of paracetamol by human liver fractions. Br J Clin Pharmacol 1991;32:768-70
  • Filler G. Optimization of immunosuppressive drug monitoring in children. Transplant Proc 2007;39:1241-3
  • Carcillo JA, Doughty L, Kofos D, Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med 2003;29:980-4
  • Ceelie I, van der Starre C, Tibboel D, Evaluation of drug formularies for pediatric intensive care. Pediatr Crit Care Med 2011;12:e14-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.