827
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism

, , , , MD PhD &
Pages 1101-1115 | Published online: 08 Jul 2011

Bibliography

  • Allele nomenclature for Cytochrome P450 enzymes. The Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Stockholm: division of molecular toxicology, IMM, Karolinska Institutet. 2008. Available from: http://www.cypalleles.ki.se [Cited 15 November 2010]
  • Black JL III, O'Kane DJ, Mrazek DA. The impact of CYP allelic variation on antidepressant metabolism: a review. Expert Opini Drug Metab Toxicol 2007;3(9):21-31
  • Ingelman-Sundberg M, Sim SC, Gomez A, Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007;116(3):496-526
  • Lovlie R, Daly AK, Matre GE, Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics 2001;11(1):45-55
  • De Leon J. AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn 2006;6(3):277-86
  • Bock KW, Schrenk D, Forster A, The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 1994;4(4):209-18
  • Dalen P, Dahl ML, Bernal Ruiz ML, 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998;63(4):444-52
  • Bertilsson L, Dahl ML, Dalen P, Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002;53(2):111-22
  • Ohara K, Tanabu S, Ishibashi K, CYP2D6*10 alleles do not determine plasma fluvoxamine concentration/dose ratio in Japanese subjects. Eur J Clin Pharmacol 2003;58(10):659-61
  • Kirchheiner J, Nickchen K, Bauer M, Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004;9(5):442-73
  • Smith G, Stubbins MJ, Harries LW, Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica 1998;28(12):1129-65
  • Kirchheiner J, Rodriguez-Antona C. Cytochrome P450 2D6 genotyping: potential role in improving treatment outcomes in psychiatric disorders. CNS Drugs 2009;23(3):181-91
  • Sachse C, Brockmoller J, Bauer S, Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997;60(2):284-95
  • Steimer W, Zopf K, Von Amelunxen S, Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 2004;50(9):1623-33
  • Grasmader K, Verwohlt PL, Rietschel M, Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004;60(5):329-36
  • Sawamura K, Suzuki Y, Someya T. Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol 2004;60(8):553-7
  • Ueda M, Hirokane G, Morita S, The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2006;30(3):486-91
  • Charlier C, Broly F, Lhermitte M, Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 2003;25(6):738-42
  • Ozdemir V, Tyndale RF, Reed K, Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol 1999;19(5):472-5
  • Gex-Fabry M, Eap CB, Oneda B, CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit 2008;30(4):474-82
  • Yoon YR, Cha IJ, Shon JH, Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects. Clin Pharmacol Ther 2000;67(5):567-76
  • Lam YW, Gaedigk A, Ereshefsky L, CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002;22(8):1001-6
  • Lim KS, Cho JY, Jang IJ, Pharmacokinetic interaction of flecainide and paroxetine in relation to the CYP2D6*10 allele in healthy Korean subjects. Br J Clin Pharmacol 2008;66(5):660-6
  • Lim KS, Jang IJ, Kim BH, Changes in the QTc interval after administration of flecainide acetate, with and without coadministered paroxetine, in relation to. cytochrome P450 2D6 genotype: data from an open-label, two-period, single-sequence crossover study in healthy Korean male subjects. Clin Ther 2010;32(4):659-66
  • Ververs FF, Voorbij HA, Zwarts P, Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy. Clini Pharmacokinet 2009;48(10):677-83
  • Wadelius M, Darj E, Frenne G, Induction of CYP2D6 in pregnancy. Clin Pharmacol Ther 1997;62(4):400-7
  • Spina E, Santoro V, D'Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 2008;30(7):1206-27
  • Llerena A, Dorado P, Berecz R, Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 2004;59(12):869-73
  • Eap CB, Bondolfi G, Zullino D, Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 2001;21(3):330-4
  • Scordo MG, Spina E, Dahl ML, Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine andnorfluoxetine. Basic Clin Pharmacol Toxicol 2005;97(5):296-301
  • Watanabe J, Suzuki Y, Fukui N, Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration. Ther Drug Monit 2008;30(6):705-8
  • Gerstenberg G, Aoshima T, Fukasawa T, Effects of the CYP 2D6 genotype and cigarette smoking on the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients. Ther Drug Monit 2003;25(4):463-8
  • Spigset O, Granberg K, Hagg S, Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997;52(2):129-33
  • Carrillo JA, Dahl ML, Svensson JO, Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996;60(2):183-90
  • Katoh Y, Uchida S, Kawai M, Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients. Bio Pharm Bull 2010;33(2):285-8
  • Sugahara H, Maebara C, Ohtani H, Effect of smoking and CYP2D6 polymorphisms on the extent of fluvoxamine-alprazolam interaction in patients with psychosomatic disease. Eur J Clin Pharmacol 2009;65(7):699-704
  • Kunii T, Fukasawa T, Yasui-Furukori N, Interaction study between enoxacin and fluvoxamine. Ther Drug Monit 2005;27(3):349-53
  • Rudberg I, Hendset M, Uthus LH, Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit 2006;28(1):102-5
  • De Vos A, Van Der Weide J, Loovers HM. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J 8 Jun 2010 [Epub ahead of print]
  • Fudio S, Borobia AM, Pinana E, Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol 2010;626(2-3):200-4
  • Carlsson B, Olsson G, Reis M, Enantioselective analysis of citalopram and metabolites in adolescents. Ther Drug Monit 2001;23(6):658-64
  • Kvist EE, Al-Shurbaji A, Dahl ML, Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet 2001;40(11):869-77
  • Morita S, Shimoda K, Someya T, Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000;20(2):141-9
  • Lee SY, Sohn KM, Ryu JY, Sequence-based CYP2D6 genotyping in the Korean population. Ther Drug Monit 2006;28(3):382-7
  • Halling J, Weihe P, Brosen K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br J Clin Pharmacol 2008;65(1):134-8
  • Shimoda K, Someya T, Yokono A, The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002;22(4):371-8
  • Schenk PW, Van Fessem MA, Verploegh-Van Rij S, Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 2008;13(6):597-605
  • Madsen H, Nielsen KK, Brosen K. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms–a population study. Br J Clin Pharmacol 1995;39(4):433-9
  • Kirchheiner J, Sasse J, Meineke I, Trimipramine pharmacokinetics after intravenous and oral administration in carriers of CYP2D6 genotypes predicting poor, extensive and ultrahigh activity. Pharmacogenetics 2003;13(12):721-8
  • Kirchheiner J, Muller G, Meineke I, Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol 2003;23(5):459-66
  • Furman KD, Grimm DR, Mueller T, Impact of CYP2D6 intermediate metabolizer alleles on single-dose desipramine pharmacokinetics. Pharmacogenetics 2004;14(5):279-84
  • Bouchez J, Dumur V, Lhermitte M, Genotypes of cytochrome P450 and clinical response to clomipramine in patients with major depression. Eur Psychiatry 1995;10(8):410-12
  • Mulder H, Herder A, Wilmink FW, The impact of cytochrome P450-2D6 genotype on the use and interpretation of therapeutic drug monitoring in long-stay patients treated with antidepressant and antipsychotic drugs in daily psychiatric practice. Pharmacoepidemiol Drug Saf 2006;15(2):107-14
  • Shams ME, Arneth B, Hiemke C, CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006;31(5):493-502
  • Nichols AI, Lobello K, Guico-Pabia CJ, Venlafaxine metabolism as a marker of cytochrome P450 enzyme 2D6 metabolizer status. J Clin Psychopharmacol 2009;29(4):383-6
  • Van Der Weide J, Van Baalen-Benedek EH, Kootstra-Ros JE. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 2005;27(4):478-83
  • Whyte EM, Romkes M, Mulsant BH, CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry 2006;21(6):542-9
  • Eap CB, Lessard E, Baumann P, Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 2003;13(1):39-47
  • Fukuda T, Yamamoto I, Nishida Y, Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999;47(4):450-3
  • Fukuda T, Nishida Y, Zhou Q, The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000;56(2):175-80
  • Lessard E, Yessine MA, Hamelin BA, Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999;9(4):435-43
  • Kirchheiner J, Henckel HB, Meineke I, Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004;24(6):647-52
  • Lind AB, Reis M, Bengtsson F, Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokinet 2009;48(1):63-70
  • Grasmader K, Verwohlt PL, Kuhn KU, Population pharmacokinetic analysis of mirtazapine. Eur J Clin Pharmacol 2004;60(7):473-80
  • Desta Z, Zhao X, Shin JG, Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002;41(12):913-58
  • Sim SC, Risinger C, Dahl ML, A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006;79(1):103-13
  • Yu BN, Chen GL, He N, Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos 2003;31(10):1255-9
  • Yin OQ, Wing YK, Cheung Y, Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol 2006;26(4):367-72
  • Tsai MH, Lin KM, Hsiao MC, Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 2010;11(4):537-46
  • Jin Y, Pollock BG, Frank E, Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J Clin Pharmacol 2010;50(1):62-72
  • Noehr-Jensen L, Zwisler ST, Larsen F, Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur J Clin Pharmacol 2009;65(9):887-94
  • Rudberg I, Mohebi B, Hermann M, Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008;83(2):322-7
  • Ohlsson Rosenborg S, Mwinyi J, Andersson M, Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol 2008;64(12):1175-9
  • Li-Wan-Po A, Girard T, Farndon P, Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol 2010;69(3):222-30
  • Liu ZQ, Cheng ZN, Huang SL, Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol 2001;52(1):96-9
  • Harvey AT, Preskorn SH. Fluoxetine pharmacokinetics and effect on CYP2C19 in young and elderly volunteers. J Clin Psychopharmacol 2001;21(2):161-6
  • Jan MW, ZumBrunnen TL, Kazmi YR, Pharmacokinetics of fluvoxamine in relation to CYP2C19 phenotype and genotype. Drug Metabol Drug Interact 2002;19(1):1-11
  • Spigset O, Granberg K, Hagg S, Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998;45(3):257-63
  • Yasui-Furukori N, Takahata T, Nakagami T, Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol 2004;57(4):487-94
  • Wang JH, Liu ZQ, Wang W, Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001;70(1):42-7
  • Thieme D, Rolf B, Sachs H, Correlation of inter-individual variations of amitriptyline metabolism examined in hairs with CYP2C19 and CYP2D6 polymorphisms. Int J Legal Med 2008;122(2):149-55
  • Jiang ZP, Shu Y, Chen XP, The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur J Clin Pharmacol 2002;58(2):109-13
  • Morinobu S, Tanaka T, Kawakatsu S, Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci 1997;51(4):253-7
  • Koyama E, Tanaka T, Chiba K, Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996;16(4):286-93
  • Kirchheiner J, Klein C, Meineke I, Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003;13(10):619-26
  • Hesse LM, He P, Krishnaswamy S, Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 2004;14(4):225-38
  • Pavanello S, Pulliero A, Lupi S, Influence of the genetic polymorphism in the 5'-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat Res 2005;587(1-2):59-66
  • Takata K, Saruwatari J, Nakada N, Phenotype-genotype analysis of CYP1A2 in Japanese patients receiving oral theophylline therapy. Eur J Clin Pharmacol 2006;62(1):23-8
  • Aklillu E, Carrillo JA, Makonnen E, Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 2003;64(3):659-69
  • Mihara K, Kondo T, Suzuki A, Effects of genetic polymorphism of CYP1A2 inducibility on the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine in depressed Japanese patients. Pharmacol Toxicol 2001;88(5):267-70
  • Howland RH. Critical appraisal and update on the clinical utility of agomelatine, a melatonergic agonist, for the treatment of major depressive disease in adults. Neuropsychiatry Dis Treat 2009;5:563-76
  • Lobo ED, Bergstrom RF, Reddy S, In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet 2008;47(3):191-202
  • Kirchheiner J, Brosen K, Dahl ML, CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001;104(3):173-92
  • Kirchheiner J, Bertilsson L, Bruus H, Individualized medicine - implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. Pharmacopsychiatry 2003;36(Suppl 3):S235-43
  • Murphy GM Jr, Kremer C, Rodrigues HE, Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003;160(10):1830-5
  • Gerstenberg G, Aoshima T, Fukasawa T, Relationship between clinical effects of fluvoxamine and the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients. Psychopharmacology (Berl) 2003;167(4):443-8
  • Serretti A, Calati R, Massat I, Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol 2009;24(5):250-6
  • Zourkova A, Hadasova E. Paroxetine-induced conversion of cytochrome P450 2D6 phenotype and occurrence of adverse effects. Gen Physiol Biophys 2003;22(1):103-13
  • Sugai T, Suzuki Y, Sawamura K, The effect of 5-hydroxytryptamine 3A and 3B receptor genes on nausea induced by paroxetine. Pharmacogenomics J 2006;6(5):351-6
  • Stedman CA, Begg EJ, Kennedy MA, Cytochrome P450 2D6 genotype does not predict SSRI (fluoxetine or paroxetine) induced hyponatraemia. Hum Psychopharmacol 2002;17(4):187-90
  • Roberts RL, Mulder RT, Joyce PR, No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol 2004;19(1):17-23
  • Suzuki Y, Sawamura K, Someya T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and CytochromeP4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology 2006;31(4):825-31
  • Christensen M, Tybring G, Mihara K, Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther 2002;71(3):141-52
  • Spigset O, Hedenmalm K, Dahl ML, Seizures and myoclonus associated with antidepressant treatment: assessment of potential risk factors, including CYP2D6 and CYP2C19 polymorphisms, and treatment with CYP2D6 inhibitors. Acta Psychiatr Scand 1997;96(5):379-84
  • Murata Y, Kobayashi D, Imuta N, Effects of the serotonin 1A, 2A, 2C, 3A, and 3B and serotonin transporter gene polymorphisms on the occurrence of paroxetine discontinuation syndrome. J Clin Psychopharmacol 2010;30(1):11-17
  • Sato A, Okura Y, Minagawa S, Life-threatening serotonin syndrome in a patient with chronic heart failure and CYP2D6*1/*5. Mayo Clin Proc 2004;79(11):1444-8
  • Sallee FR, DeVane CL, Ferrell RE. Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency. J Child Adolesc Psychopharmacol 2000;10(1):27-34
  • Baumann P, Barbe R, Vabre-Bogdalova A, Epileptiform seizure after sertraline treatment in an adolescent experiencing obsessive-compulsive disorder and presenting a rare pharmacogenetic status. J Clin Psychopharmacol 2006;26(6):679-81
  • Wijnen PA, Limantoro I, Drent M, Depressive effect of an antidepressant: therapeutic failure of venlafaxine in a case lacking CYP2D6 activity. Ann Clin Biochem 2009;46(Pt 6):527-30
  • Zourkova A, Hadasova E. Relationship between CYP 2D6 metabolic status and sexual dysfunction in paroxetine treatment. J Sex Marital Ther 2002;28(5):451-61
  • Peters EJ, Slager SL, Kraft JB, Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS ONE 2008;3(4):e1872
  • Rau T, Wohlleben G, Wuttke H, CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther 2004;75(5):386-93
  • Kawanishi C, Lundgren S, Agren H, Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004;59(11):803-7
  • Zackrisson AL, Lindblom B, Ahlner J. High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther 2010;88(3):354-9
  • Steimer W, Zopf K, von Amelunxen S, Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005;51(2):376-85
  • De Leon J, Susce MT, Murray-Carmichael E. The AmpliChip CYP450 genotyping test: Integrating a new clinical tool. Mol Diagn Ther 2006;10(3):135-51
  • Lerman C, Shields PG, Wileyto EP, Pharmacogenetic investigation of smoking cessation treatment. Pharmacogenetics 2002;12(8):627-34
  • Sim SC, Nordin L, Andersson TM, Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 2010;153B(6):1160-6
  • Sindrup SH, Brosen K, Gram LF, The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992;51(3):278-87
  • De Leon J, Armstrong SC, Cozza KL. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 2006;47(1):75-85
  • Janicak PG, DavisJM, Preskorn SH, Principles and practice of psychopharmacotherapy. 2nd edition. Williams & Wilkins, Baltimore; 1997. p. 306-15
  • Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007;1770(3):489-94
  • Baumann P, Jonzier-Perey M, Koeb L, Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986;1(2):102-12
  • Spina E, Gitto C, Avenoso A, Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997;51(5):395-8
  • Baumann P, Ulrich S, Eckermann G, The AGNP-TDM Expert Group Consensus Guidelines: focus on therapeutic monitoring of antidepressants. Dialogues Clin Neurosci 2005;7(3):231-47
  • Miksys S, Tyndale RF. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab Rev 2004;36(2):313-33
  • Eap CB, Jaquenoud Sirot E, Baumann P. Therapeutic monitoring of antidepressants in the era of pharmacogenetics studies. Ther Drug Monit 2004;26(2):152-5
  • Kaplan EM. Antidepressant noncompliance as a factor in the discontinuation syndrome. J Clin Psychiatry 1997;58(Suppl 7):31-5; discussion 36
  • EGAPP. Recommendations from the EGAPP Working Group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors. Genet Med 2007;9(12):819-25
  • Rasmussen-Torvik LJ, McAlpine DD. Genetic screening for SSRI drug response among those with major depression: great promise and unseen perils. Depress Anxiety 2007;24(5):350-7
  • FDA clears genetic test that advances personalized medicine: test helps determine safety of drug therapy. US Food and Drug Administration. 2005. Available from: http://www.fda.gov/cder/genomics/pharmacoconceptfn.pdf [Cited 18 October 2010]
  • Man M, Farmen M, Dumaual C, Genetic variation in metabolizing enzyme and transporter genes: comprehensive assessment in 3 major East Asian subpopulations with comparison to Caucasians and Africans. J Clin Pharmacol 2010;50(8):929-40
  • Nishida Y, Fukuda T, Yamamoto I, CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 2000;10(6):567-70
  • Kim KA, Song WK, Kim KR, Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. J Clin Pharm Ther 2010;35(6):697-703
  • Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 2007;151(6):737-48
  • Reddy S, Kane C, Pitrosky B, Clinical utility of desvenlafaxine 50 mg/d for treating MDD: a review of two randomized placebo-controlled trials for the practicing physician. Curr Med Res Opin 2010;26(1):139-50
  • Kalgutkar AS, Henne KR, Lame ME, Metabolic activation of the nontricyclic antidepressant trazodone to electrophilic quinone-imine and epoxide intermediates in human liver microsomes and recombinant P4503A4. Chem Biol Interact 2005;155(1-2):10-20
  • Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressive disorder. Ann Pharmacother 2008;42(12):1822-31
  • Chow T, Hiroi T, Imaoka S, Isoform-selective metabolism of mianserin by cytochrome P-450 2D. Drug Metab Dispos 1999;27(10):1200-4
  • Rotzinger S, Bourin M, Akimoto Y, Metabolism of some "second"- and "fourth"-generation antidepressants: iprindole, viloxazine, bupropion, mianserin, maprotiline, trazodone, nefazodone, and venlafaxine. Cell Mol Neurobiol 1999;19(4):427-42
  • Brachtendorf L, Jetter A, Beckurts KT, Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol 2002;90(3):144-9
  • Stormer E, Von Moltke LL, Shader RI, Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2000;28(10):1168-75
  • Interactions medicamenteuses et cytochromes p450. Centre d'informations therapeutiques et de pharmacovigilance, service de pharmacologie et toxicologie cliniques, Hopitaux Universitaires, Geneve. 2010. Available from: http://pharmacoclin.hug-ge.ch/_library/pdf/cytp450.pdf [Cited 23 February 2011]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.