241
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Challenges for computational structure–activity modelling for predicting chemical toxicity: future improvements?

Pages 1129-1140 | Published online: 15 Jul 2011

Bibliography

  • Johnson M, Maggiora G. Concepts and applications of molecular similarity. Wiley; New York: 2008
  • Nigsch F, Macaluso NJM, Mitchell JBO, Zmuidinavicius D. Computational toxicology: an overview of the sources of data and of modelling methods. Expert Opin Drug Metab Toxicol 2009;7:1-14
  • Barratt MD. Prediction of toxicity from chemical structure. Cell Biol Toxicol 2008;16:1-13
  • Combes RD. In silico Methods for Toxicity Prediction. In: Balls M, Combes R, Boghal N. editors. New Technologies in Toxicity Testing. Landes Bioscience; Austin, Texas: Available from: www.landesbioscience.com/curie/chapter/4662/2008
  • Cronin MDT. editor. Special Anniversary Volume; Issue 5 – Replacement – Focus on in silico methods. ATLA 2009;37:465-545
  • Judson PN, Combes RD. Artificial intelligence systems for predicting toxicity. Pestic Outlook 1996;7:11-15
  • Available from. http://www.molecular-networks.com/online_demos/corina_demo.html
  • Toropov AA, Benfenati E. SMILES in QSPR/QSAR modelling: results and perspectives. Curr Drug Discov Technol 2007;4:77-116
  • Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modelling. J Mol Graphics Modell 2008;26:1315-26
  • Netzeva TI, Worth AP, Aldenberg T, Current status of methods for defining the applicability domain of (Quantitative) Structure–Activity Relationships. The report and recommendations of ECVAM Workshop 52. ATLA 2005;33:155-73
  • Tichy M. Experimental toxicology in silico. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005;149:217-19
  • Dearden JC, Barratt MD, Benigni R, The development and validation of expert systems for predicting toxicity. The report and recommendations of an ECVAM/ECB workshop (ECVAM workshop 24). ATLA 1997;25:223-52
  • Combes RD, Rodford R. The use of expert systems for toxicity prediction - illustrated with reference to the DEREK program. In: Cronin M, Livingstone D. editors. Predicting Chemical Toxicity and Fate Boca Raton. CRC Press; FL, USA: 2004. p. 193-229
  • Cronin MTD, Dearden JC. QSAR in toxicology. 4. Prediction of non-lethal mammalian toxicological endpoints, and expert systems for toxicity prediction. Quant Struct Act Relationships 1995;14:518-23
  • Anon. Structure-activity relationships in toxicology and ecotoxicology: an assessment. ECETOC Monograph No. 8. European Chemical Industry Ecology and Toxicology Centre; Brussels: 1986
  • Greene N. Computer prediction systems for toxicity; an update. Adv Drug Del Revs 2002;54:417-31
  • Sanderson DM, Earnshaw CG, Judson PN. Computer prediction of possible toxic action from chemical structure; the DEREK System. Hum Exp Toxicol 1991;10:261-73
  • Coecke S, Ahr H, Blaauboer BJ, Metabolism: a bottleneck in in vitro toxicological test development. The report and recommendations of ECVAM Workshop 54. ATLA 2006;34:49-84
  • Saiakhov RD, Klopman G. MultiCASE expert systems and the REACH Initiative. Toxicol Mechs Meths 2008;18:159-75
  • Gombar VK, Enslein K, Hart JB, Estimation of maximum tolerated dose for long-term bioassays from acute lethal dose and structure by QSAR. Risk Anal 1991;11:509-17
  • Patlewicz G, Dimitrov SD, Low LK, TIMES-SS-A promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regulat Toxicol Pharmacol 2007;47:225-39
  • Lewis DVF. Computer-assisted methods in the evaluation of chemical toxicity. In: Lipkowitz KB, Boyd DB. editors. Reviews in computational chemistry. (Volume 3). VCH Publishers, Inc.; New York: 1992. p. 173-222
  • Livingstone DJ. Building QSAR models: a practical guide. In: Cronin M, Livingstone D. editors. Predicting Chemical Toxicity and Fate. CRC Press; Boca Raton, FL, USA: 2004. p. 151-70
  • Maran U, Sild S. QSAR modelling of mutagenicity of non-congeneric sets of organic compounds. In: Dubitzky W, Azuaje F. editors. Artificial intelligence methods and tools for systems biology. Springer; Netherlands: 2004. p. 19-35
  • Devillers J, Domine D. A noncongeneric model for predicting toxicity of organic molecules to Vibrio fischeri. SAR QSAR Environ Res 1999;10:61-70
  • Fjodorova N, Vracko M, Novic M. Roncaglioni A, Benfenati E. New public QSAR model for carcinogenicity. Chem Cent J 2010;4(Suppl 1):S3
  • Anon. The Report from the Expert Group on (Quantitative Structure-Activity Relationships on the Principles for the Validation of (Q)SAR). OECD Series on Testing and Assessment Number 49. Organsiation of Economic Cooperation and Development Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, 2001. p. 206
  • Worth AP, Cronin MTD. Report of the workshop on the validation of QSARs and other computational prediction models. ATLA 2004;32(Suppl 1):703-6
  • Anon. US Food and Drug Administration. Challenges and opportunities report — March 2004. Innovation or stagnation: Challenge and opportunity on the critical path to new medical products. Available from: http://www.fda.gov/ScienceResearch/SpecialTopics/Critical/PathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm
  • Richard A, Yang C, Judson R. Toxicity Data Informatics: Supporting a new Paradigm for Toxicity Prediction. Tox Mech Meths 2008;18:103-18
  • Scior T, Medina-Franco JL, Do Q-T, How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem 2009;16:4297-313
  • Todeschini R, Consonni V. Handbook of molecular descriptors. J Wiley; New York: 2000. p. 667
  • Perez Gonzalez M, Helguera AM. TOPS-MODE versus DRAGON descriptors to predict permeability coefficients through low-density polyethylene. J Comput Aided Mol Des 2003;17:665-72
  • Contrera JF, Matthews EJ, Kruhlak NL, Benz RD. In silico screening of chemicals for genetic toxicity using MDL-QSAR, nonparametric discriminant analysis, E-state, connectivity, and molecular property descriptors. Toxicol Mechs Meths 2008;18:207-16
  • Dearden JC. In silico prediction of aqueous solubility. Expert Opin Drug Discov 2006;1:31-52
  • Delaney JS. Predicting aqueous solubility from structure. Drug Discov Today 2004;10:289-95
  • Dorn SB, Degen GH, Bolt HM, Some molecular descriptors for non-specific chromosomal genotoxicity based on hydrophobic interactions. Arch Toxicol 2008;82:333-8
  • Duchowicz PR, Ocsachoque MA. Quantitative structure-toxicity models for heterogeneous aliphatic compounds. QSAR Combinat Sci 2009;28:281-95
  • Wold S, Albano C, Dunn WJ III, Modelling data tables by principal components and PLS: class patterns and quantitative predictive relations. Analysis 1984;12:477-85
  • Benigni R, Guiliani A. Multivariate analyses in genetic toxicology. In: Devillers J, Karcher W. editors. Applied Multivariate Analysis in SAR and Environmental Studies. ECSC, EEC, EAEC; Brussels and Luxembourg: 1991. p. 347-75
  • Eriksson L, Jaworska J, Worth AP, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs - Mini-Monograph. Environ Hlth Persps 2003;111:1361-75
  • Votano JR, Parham M, Hall LM, QSAR modelling of human serum protein binding with several modelling techniques utilizing structure-information representation. J Med Chem 2006;49:7169-81
  • Doweyko AM. QSAR: dead or alive? J Comput Aided Mol Des 2008;22:81-9
  • Johnson SR. The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Modell 2008;48:25-6
  • Maggiora GM. On outliers and activity cliffs - why QSAR often disappoints. J Chem Inf Modell 2006;46:1535
  • Bajorath J, Peltason L, Wawer M, Navigating structure–activity landscapes. Drug Discov Today 2009;14:698-705
  • Peltason L, Bajorath J. Systematic computational analysis of structure–activity relationships: concepts, challenges and recent advances. Future Med Chem 2009;1:451-66
  • Peltason LB. Systematic computational analysis of structure–Activity Relationships. PhD Thesis. University of Bonn; 2009
  • Wassermann AM, Wawer M, Bajorath J. Activity landscape representations for structure-activity relationship analysis. J Med Chem 2010;53:8209-23
  • Wassermann AM, Bajorath J. Chemical substitutions that introduce activity cliffs across different compound classes and biological targets. J Chem Inf Model 2010;50:1248-56
  • Guha R, Van Drie JH. Assessing how well a modelling protocol captures a structure-activity landscape. J Chem Inf Modell 2008;48:1716-28
  • Guha R, Van Drie J. Structure–activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Modell 2008;48:646-58
  • Guha R. The ups and downs of structure-activity landscapes, In: chemoinformatics and computational chemical biology series. Springer Science Business Media LLC. Methods Mol Biol 2011;672:101-17
  • Wawer M. Peltason Ll, Weskamp N, Teckentrup A, Bajorath J. Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 2008;51:6075-84
  • Peltason L, Bajorath J. SAR index: quantifying the nature of structure-activity relationships. J Med Chem 2007;50:5571-8
  • Wawer M, Peltason L, Bajorath J. Elucidation of structure-activity relationship pathways in biological screening data. J Med Chem 2009;52:1075-80
  • Peltason L, Hu Y, Bajorath J. From structure–activity to structure–selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds. ChemMedChem 2009;4:1864-73
  • Kenny PW, Sadowski J. Structure modification in chemical databases. In: Oprea TI, Wiley VCH. editors. Chemoinformatics in drug discovery. Weinheim; Germany: 2005. p. 271-85
  • Wasserman AM, Muster W, Breidenbach A. Fischer, H, Kirchner S, Muller L, Pahler A. Computational toxicology in drug development. Drug Discov Today 2008;13:303-10
  • Combes RD. Is computational toxicology withering on the vine? Arch Toxicol 2010;84:333-6
  • Enoch SJ, Cronin MTD, Madden JC, Hewitt M. Formation of structural categories to allow for read-across for teratogenicity. QSAR Comb Sci 2009;00:1-13
  • Ellison CM, Enoch SJ, Cronin MTD, Definition of the applicability domains of knowledge based predictive toxicology expert systems by using a structural fragment based approach. ATLA 2009;37:533-45
  • Jaworska J, Nikolova-Jeliazkova N. How can structural similarity analysis help in category formation? SAR QSAR Environ Res 2007;18:195-207
  • Warr W. Accuracy of prediction. QSAR World Oct 2004;1:1-4
  • Wold S. Validation of QSAR's. Quant Struct Act Relationships 2001;10:191-3
  • Anon. What are cross-validation and bootstrapping? 2007. Available from: www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html
  • Anon Sarchitect:. Theory – Statistical Methods. 2006. Available from: http://www.strandls.com/sarchitect/documents/manual_html/stattheory.html
  • Anon Sarchitect:. Building Models in Sarchitect. 2006. Available from: http://www.strandls.com/sarchitect/documents/manual_html/modelbuild.html
  • Bolboaca SD, Jantshci L. Modelling the property of compounds from structure: statistical methods for models validation. Environ Chem Lett 2008;6:175-81
  • Loonen H, Lindgren F, Hansen B, Prediction of biodegradability from chemical structure: modelling of ready biodegradation test data. Envir Toxicol Chem 1999;18:1763-8
  • Grammatica P. Different approaches to QSAR models’ validation. 2007. Available from: http://echeminfo.colayer.net/html/abstracts/paolaabs.htm
  • Golbraikh A, Tropsha A. Beware of q2! J Molec. Graph Model 2002;20:269-76
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR Comb Sci 2003;22:69-77
  • Combes R, Balls M. Intelligent testing strategies for chemicals testing – A case of more haste, less speed? ATLA 2005;33:289-97
  • Massarelli I, Imbriani M, Coi A, Development of QSAR models for predicting hepatocarcinogenic toxicity of chemicals. Eur J Med Chem 2009;30:1-7
  • Roy PP, Leonard JT, Roy K. Exploring the impact of size of training sets for the development of predictive QSAR models. Chemometrics Int Lab Syst 2008;90:31-42
  • Helguera AM, Perez MAC, Combes R, Gonzalez MP. The prediction of carcinogenicity from molecular structure. Curr Comput Aided Drug Des 2005;1:65-72
  • Zhu H, Tropsha A. Fourches, D, et al. Combinatorial QSAR modelling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 2008;48:766-84
  • Parry JM. Detecting and predicting the activity of rodent carcinogens. Mutagenesis 1994;9:3-5
  • Worth AP, Cronin MTD. Report of the workshop on the validation of QSARs and other computational prediction models. ATLA 2004;32(Suppl 1):703-6
  • Anon. The Report from the Expert Group on (Quantitative Structure-Activity Relationships on the Principles for the Validation of (Q)SAR). OECD Series on Testing and Assessment Number 49. Organsiation of Economic Cooperation and Development Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, 2004. p. 206
  • Zvinavashe E, Murk AJ, Rietjens IMCM. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Chem Res Toxicol 2008;21:2229-36
  • Arvidson KB, Chanderbhan R, Muldoon-Jacobs K, Regulatory use of computational toxicology tools and databases at the United States Food and Drug Administration’s Office of Food Additive Safety. Expert Opin Drug Metab Toxicol 2010;6:793-6
  • Zinke S, Gerner I, Schlede E. Evaluation of a rule base for identifying contact allergens by using a regulatory database: comparison of data on chemicals notified in the European Union with “structural alerts” used in the DEREK expert system. Altern Lab Anim 2002;30:285-98
  • Richard AM, Gold LS, Nicklaus MC. Chemical structure indexing of toxicity data on the internet: moving toward a flat world. Curr Opin Drug Discov Devel 2006;9:314-25
  • Available from: www.epa.gov/ncct/dsstox/
  • Richard AM, Williams CR. Distributed structure-searchable toxicity (DSSTox) public database network: a proposal. Mutat Res New Frontiers 2002;499:27-52
  • Judson R, Richard A, Dix D, ACToR – Aggregated computational toxicology resource. Toxicol Appl Pharmacol 2008;233:7-13
  • Judson R, Richard A, Dix DJ, The toxicity data landscape for environmental chemicals. Environ Health Perspect 2009;117:685-95
  • Edwards CN, Combes RD. Studies on the mutagenicity of commercial preparations of the food colour Red 2G after purification or oxidation. Mutat Res 1983;117:127-34
  • Klimisch HJ, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 1997;25:1-5
  • Combes R, Barratt M, Balls M. An overall strategy for the testing of chemicals for human hazard and risk assessment under the EU REACH system. ATLA 2003;31:7-19
  • Combes RD, Dandrea J, Balls M. FRAME and the Royal Commission on Environmental Pollution: common recommendations for assessing risks posed by chemicals under the EU REACH system. ATLA 2003;31:529-35
  • Grindon C, Combes R, Cronin MT, Integrated decision-tree testing strategies for environmental toxicity with respect to the requirements of the EU REACH legislation. ATLA 2006;34:651-64
  • Kinsner-Ovaskainen A, Akkan Z, Silvia Casati S, Overcoming barriers to validation of non-animal partial replacement methods/integrated testing strategies: the report of an EPAA–ECVAM Workshop. ATLA 2009;37:1-8
  • Benfenati E, Gini G, Hoffmann S, Luttik R. Comparing in vivo, in vitro and in silico methods and integrated strategies for chemical assessment: problems and prospects. ATLA 2010;38:153-66
  • van Leeuwen CJ, Patlewicz GY, Worth AP. Intelligent testing strategies. In: Risk assessment of chemicals, an introduction. 2nd edition. Springer; Netherlands: 2007. p. 467-509
  • Combes R, Dandrea J, Balls M. A critical assessment of the European Commission’s proposals for the risk assessment and registration of chemical substances in the European union. ATLA 2003;31:353-64
  • Grindon C. The new EU REACH regulation has finally been adopted: is this the end of the campaign trail… or just the beginning? ATLA 2007;35:239-42
  • Available from: http://echa.europa.eu/doc/publications/echa_list_of_publications_2010.pdf
  • Available from: www.oecd.org/document/54/0,3343,en_2649_34379_42923638_1_1_1_1,00.html; with version 2 of the toolbox available from: http://echa.europa.eu/news/na/201011/na_10_64_qsar_toolbox_en.asp
  • Available from: www.librariesanddirectories.com/index.php?page=resources&t=2&rid=rm6435
  • Matthews EJ, Contrera JF. In silico approaches to explore toxicity end points: issues and concerns for estimating human health effects. Expert Opin Drug Metab Toxicol 2007;3:125-34
  • Cramer GM, Ford RA, Hall RL. Estimation of toxic hazard: a decision-tree approach. Food Chem Toxicol 1978;16:255-76
  • Available from: http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
  • Royal Commission on Environmental Pollution. Chemicals in Products — Safeguarding the Environment and Human Health, Twenty Fourth Report, Cm 5827. Royal Commission on Environmental Pollution. London, UK: 2003. p. 291. Available from: http://www.rcep.org.uk/chemicals.html
  • Cronin MTD. In silico toxicology challenges for pharmaceuticals: complacency or controversy? ATLA 2009;37:453-6
  • Bhogal N, Combes R, Balls M. Preclinical drug development planning. In: Cox-Gad S. editor. Preclinical development handbook: toxicology. John Wiley & Sons, Inc; Hoboken, New Jersey, USA: 2008. p. 1-63
  • Boyer S. The use of computer models in pharmaceutical safety evaluation. ATLA 2009;37:467-75
  • Matthews EJ, Kruhlak NL, Benz RD, Combined Use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows software to achieve high-performance, high-confidence, mode of action–based predictions of chemical carcinogenesis in rodents. Toxicol Mechs Methods 2008;18:189-206
  • Benigni R. Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches. Chem Rev 2005;105:1767-800

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.