346
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Functional characterization of drug uptake and metabolism in the heart

Pages 1295-1306 | Published online: 26 Aug 2011

Bibliography

  • Horowitz JD, Powell AC. Myocardial uptake of drugs and clinical effects. Clin Pharmacokinet 1986;11:354-71
  • Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol Rev 2006;7:244-58
  • Solbach TF, Konig J, Fromm MF, ATP-binding cassette transporters in the heart. Trends Cardiovasc Med 2006;16:7-15
  • Chaudhary KR, Batchu SN, Seubert JM. Cytochrome P450 enzymes and the heart. IUBMB Life 2009;61:954-60
  • Weiss M. Pharmacokinetics in organs and the intact body: model validation and reduction. Eur J Pharm Sci 1999;7:119-27
  • Rose CP, Goresky CA, Bach GG. The capillary and sarcolemmal barriers in the heart. An exploration of labeled water permeability. Circ Res 1977;41:515-33
  • Bassingthwaighte JB, Wang CY, Chan IS. Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ Res 1989;65:997-1020
  • Bassingthwaighte JB, Raymond GM, Ploger JD, GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism. Philos Transact A Math Phys Eng Sci 2006;364:1423-42
  • Kang W, Elitzer S, Noh K, Myocardial pharmacokinetics of the CYP2J substrate ebastine in rat heart. Br J Pharmacol 2011;163:1733-9
  • Weiss M, Kang W. P-glycoprotein inhibitors enhance saturable uptake of idarubicin in rat heart: pharmacokinetic/pharmacodynamic modeling. J Pharmacol Exp Ther 2002;300:688-94
  • Sermsappasuk P, Abdelrahman O, Weiss M. Modeling cardiac uptake and negative inotropic response of verapamil in rat heart: effect of amiodarone. Pharm Res 2007;24:48-57
  • Kang W, Weiss M. Digoxin uptake, receptor heterogeneity, and inotropic response in the isolated rat heart: a comprehensive kinetic model. J Pharmacol Exp Ther 2002;302:557-83
  • Morgan DJ. Permeability of myocardial capillaries to hydrophilic drugs: the paracellular pathway. Clin Exp Pharmacol Physiol 1996;23:975-9
  • DeGrado TR, Wang S. Transcapillary transport of metaiodobenzylguanidine (MIBG) in isolated rat heart. Nucl Med Biol 1998;25:455-65
  • Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011;51:45-73
  • Copeland SE, Ladd LA, Gu XQ, The effects of general anesthesia on whole body and regional pharmacokinetics of local anesthetics at toxic doses. Anesth Analg 2008;106:1440-9
  • Chen GP, Tabibiazar R, Branch KR, Cardiac receptor physiology and imaging: an update. J Nucl Cardiol 2005;12:714-30
  • Eyal S, Chung FS, Muzi M, Simultaneous PET imaging of P-glycoprotein inhibition in multiple tissues in the pregnant nonhuman primate. J Nucl Med 2009;50:798-806
  • Vary TC, Neely JR. Characterization of carnitine transport in isolated perfused adult rat hearts. Am J Physiol 1982;242:H585-92
  • Powell AC, Horowitz JD, Kertes PJ, Determinants of acute hemodynamic and electrophysiologic effects of verapamil in humans: role of myocardial drug uptake. J Cardiovasc Pharmacol 1990;16:572-83
  • Huang YF, Upton RN, Zheng D, The enantiomer-specific kinetics and dynamics of verapamil after rapid intravenous administration to sheep: physiological analysis and modeling. J Pharmacol Exp Ther 1998;284:1048-57
  • Sermsappasuk P, Abdelrahman O, Weiss M. Cardiac pharmacokinetics and inotropic response of verapamil in rats with endotoxemia. J Pharm Sci 2008;97:2798-804
  • Horowitz JD, Dynon MK, Woodward E, Short-term myocardial uptake of lidocaine and mexiletine in patients with ischemic heart disease. Circulation 1986;73:987-96
  • Morgan DJ, Horowitz JD, Louis WJ. Prediction of acute myocardial disposition of antiarrhythmic drugs. J Pharm Sci 1989;78:384-8
  • Upton RN, Zheng DA, Grant C, Development and validation of a recirculatory physiological model of the myocardial concentrations of lignocaine after intravenous administration in sheep. J Pharm Pharmacol 2000;52:181-9
  • Huang YF, Upton RN, Runciman WB. IV bolus administration of subconvulsive doses of lignocaine to conscious sheep: relationships between myocardial pharmacokinetics and pharmacodynamics. Br J Anaesth 1993;70:556-61
  • Huang YF, Upton RN. The effect of hypoxic hypoxia on the systemic and myocardial pharmacokinetics and dynamics of lidocaine in sheep. J Pharm Sci 2003;92:180-9
  • Mazoit JX, Kantelip JP, Orhant EE, Myocardial uptake of lignocaine: pharmacokinetics and pharmacodynamics in the isolated perfused heart of the rabbit. Br J Pharmacol 1990;101:843-6
  • Gillis AM, Duff HJ, Mitchell LB, Myocardial uptake and pharmacodynamics of procainamide in patients with coronary heart disease and sustained ventricular tachyarrhythmias. J Pharmacol Exp Ther 1993;266:1001-6
  • Sermsappasuk P, Baek M, Weiss M. Kinetic analysis of myocardial uptake and negative inotropic effect of amiodarone in rat heart. Eur J Pharm Sci 2006;28:243-8
  • Beder SD, Cohen MH, BenShachar G. Time course of myocardial amiodarone uptake in the piglet heart using a chronic animal model. Pediatr Cardiol 1998;19:204-11
  • Morgan DJ, Xu CL. Effect of perfusate pH on reduction of quinidine capillary permeability by albumin in isolated perfused rat heart. Pharm Res 1994;11:1820-4
  • Morgan DJ, Huang JL. Albumin decreases myocardial permeability of unbound quinidine in perfused rat heart. J Pharmacol Exp Ther 1994;268:283-90
  • Iwata D, Kato Y, Wakayama T, Involvement of carnitine/organic cation transporter OCTN2 (SLC22A5) in distribution of its substrate carnitine to the heart. Drug Metab Pharmacokinet 2008;23:207-15
  • Powell AC, Horowitz JD, Hasin Y, Acute myocardial uptake of digoxin in humans: correlation with hemodynamic and electrocardiographic effects. J Am Coll Cardiol 1990;15:1238-47
  • Weiss M, Kang W. Inotropic effect of digoxin in humans: mechanistic pharmacokinetic/pharmacodynamic model based on slow receptor binding. Pharm Res 2004;21:231-6
  • Weiss M, Baek M, Kang W. Systems analysis of digoxin kinetics and inotropic response in the rat heart: effects of calcium and KB-R7943. Am J Physiol Heart Circ Physiol 2004;287:H1857-67
  • Swift F, Tovsrud N, Enger UH, The Na+/K+-ATPase alpha2-isoform regulates cardiac contractility in rat cardiomyocytes. Cardiovasc Res 2007;75:109-17
  • Katz A, Lifshitz Y, Bab-Dinitz E, Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem 2010;285:19582-92
  • Baek M, Weiss M. Mechanism-based modeling of reduced inotropic responsiveness to digoxin in endotoxemic rat hearts. Eur J Pharmacol 2005;514:43-51
  • Baek M, Weiss M. Down-regulation of Na+ pump alpha 2 isoform in isoprenaline-induced cardiac hypertrophy in rat: evidence for increased receptor binding affinity but reduced inotropic potency of digoxin. J Pharmacol Exp Ther 2005;313:731-9
  • Nunez-Duran H, Riboni L, Ubaldo E, Ouabain uptake by endocytosis in isolated guinea pig atria. Am J Physiol 1988;255:C479-85
  • Sermsappasuk P, Weiss M. Modelling of alpha1-adrenoceptor-mediated temporal dynamics of inotropic response in rat heart to assess ligand binding and signal transduction parameters. Br J Pharmacol 2009;156:764-73
  • Weiss M, Hassna R, Sermsappasuk P, Pharmacokinetic-pharmacodynamic modeling of the effect of propofol on alpha 1-adrenoceptor-mediated positive inotropy in rat heart. Eur J Pharm Sci 2009;38:389-94
  • Ritchie RH, Morgan DJ, Horowitz JD. Myocardial effect compartment modeling of metoprolol and sotalol: importance of myocardial subsite drug concentration. J Pharm Sci 1998;87:177-82
  • Hatori N, Sjoquist PO, Regardh C, Pharmacokinetic analysis of coronary sinus retroinfusion in pigs. Ischemic myocardial concentrations in the left circumflex coronary arterial area using metoprolol as a tracer. Cardiovasc Drugs Ther 1991;5:1005-10
  • Ritchie RH, Horowitz JD. Elimination, but not accumulation, of metoprolol by rat isolated perfused heart is selectively impaired by hypoxia. Clin Exp Pharmacol Physiol 1998;25:548-51
  • Looby M, Linke R, Weiss M. Pharmacokinetics and tissue distribution of idarubicin and its active metabolite idarubicinol in the rabbit. Cancer Chemother Pharmacol 1997;39:554-6
  • Darvari R, Boroujerdi M. Investigation of the influence of modulation of P-glycoprotein by a multiple dosing regimen of tamoxifen on the pharmacokinetics and toxicodynamics of doxorubicin. Cancer Chemother Pharmacol 2005;56:497-509
  • Cusack BJ, Musser B, Gambliel H, Effect of dexrazoxane on doxorubicin pharmacokinetics in young and old rats. Cancer Chemother Pharmacol 2003;51:139-46
  • Kang W, Weiss M. Kinetic analysis of saturable myocardial uptake of idarubicin in rat heart: effect of doxorubicin and hypothermia. Pharm Res 2003;20:58-63
  • Kang W, Weiss M. Influence of P-glycoprotein modulators on cardiac uptake, metabolism, and effects of idarubicin. Pharm Res 2001;18:1535-41
  • Speelmans G, Staffhorst RW, De Wolf FA, Verapamil competes with doxorubicin for binding to anionic phospholipids resulting in increased internal concentrations and rates of passive transport of doxorubicin. Biochim Biophys Acta 1995;1238:137-46
  • Drori S, Eytan GD, Assaraf YG. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur J Biochem 1995;228:1020-9
  • Regev R, Yeheskely-Hayon D, Katzir H, Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem Pharmacol 2005;70:161-9
  • Kang W, Weiss M. Caffeine enhances myocardial uptake of idarubicin but reverses its negative inotropic effect. Naunyn Schmiedebergs Arch Pharmacol 2003;367:151-5
  • Sridhar R, Dwivedi C, Anderson J, Effects of verapamil on the acute toxicity of doxorubicin in vivo. J Natl Cancer Inst 1992;84:1653-60
  • van Asperen J, van Tellingen O, Tijssen F, Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer 1999;79:108-13
  • Gabizon A, Dagan A, Goren D, Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 1982;42:4734-9
  • Song H, Zhang J, Han Z, Pharmacokinetic and cytotoxic studies of pegylated liposomal daunorubicin. Cancer Chemother Pharmacol 2006;57:591-8
  • Rahman AM, Yusuf SW, Ewer MS. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int J Nanomedicine 2007;2:567-83
  • Sermsappasuk P, Hrynyk R, Gubernator J, Reduced uptake of liposomal idarubicin in the perfused rat heart. Anticancer Drugs 2008;19:729-32
  • Upton RN, Huang YF, Grant C, Myocardial pharmacokinetics of thiopental in sheep after short-term administration: relationship to thiopental-induced reductions in myocardial contractility. J Pharm Sci 1996;85:863-7
  • Zheng D, Upton RN, Martinez AM. The contribution of the coronary concentrations of propofol to its cardiovascular effects in anesthetized sheep. Anesth Analg 2003;96:1589-97
  • Zeitz CJ, Campbell DJ, Horowitz JD. Myocardial uptake and biochemical and hemodynamic effects of ACE inhibitors in humans. Hypertension 2003;41:482-7
  • Ritchie RH, Hii JT, Horowitz JD. Relationship between myocardial milrinone content and its acute hemodynamic and electrophysiologic effects. J Cardiovasc Pharmacol 1998;31:885-93
  • Romero-Perez D, Fricovsky E, Yamasaki KG, Cardiac uptake of minocycline and mechanisms for in vivo cardioprotection. J Am Coll Cardiol 2008;52:1086-94
  • Minematsu T, Ohtani H, Yamada Y, Quantitative relationship between myocardial concentration of tacrolimus and QT prolongation in guinea pigs: pharmacokinetic/pharmacodynamic model incorporating a site of adverse effect. J Pharmacokinet Pharmacodyn 2001;28:533-54
  • Brunner F, Wascher TC. Contribution of the endothelium to transcapillary insulin transport in rat isolated perfused hearts. Diabetes 1998;47:1127-34
  • Meissner K, Sperker B, Karsten C, Expression and localization of P-glycoprotein in human heart: effects of cardiomyopathy. J Histochem Cytochem 2002;50:1351-6
  • van Waarde A, Ramakrishnan NK, Rybczynska AA, Synthesis and preclinical evaluation of novel PET probes for P-glycoprotein function and expression. J Med Chem 2009;52:4524-32
  • Schinkel AH, Wagenaar E, van Deemter L, Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995;96:1698-705
  • Kawahara M, Sakata A, Miyashita T, Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J Pharm Sci 1999;88:1281-7
  • Arici MA, Kilin CE, Demir O, Interactions between Verapamil and Digoxin in Langendorff-Perfused rat hearts: the role of inhibition of P-glycoprotein in the heart. Basic Clin Pharmacol Toxicol 2010;107:847-52
  • Thum T, Borlak J. Cytochrome P450 mono-oxygenase gene expression and protein activity in cultures of adult cardiomyocytes of the rat. Br J Pharmacol 2000;130:1745-52
  • Salama NN, Kelly EJ, Bui T, The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice. J Pharm Sci 2005;94:1216-25
  • van Asperen J, van Tellingen O, Schinkel AH, Comparative pharmacokinetics of vinblastine after a 96-hour continuous infusion in wild-type mice and mice lacking mdr1a P-glycoprotein. J Pharmacol Exp Ther 1999;289:329-33
  • Cox DS, Scott KR, Gao H, Effect of P-glycoprotein on the pharmacokinetics and tissue distribution of enaminone anticonvulsants: analysis by population and physiological approaches. J Pharmacol Exp Ther 2002;302:1096-104
  • Parker RB, Yates CR, Laizure SC, P-glycoprotein modulates aldosterone plasma disposition and tissue uptake. J Cardiovasc Pharmacol 2006;47:55-9
  • Zhang Y, Berger SA. Ketotifen reverses MDR1-mediated multidrug resistance in human breast cancer cells in vitro and alleviates cardiotoxicity induced by doxorubicin in vivo. Cancer Chemother Pharmacol 2003;51:407-14
  • Gonzalez O, Colombo T, De Fusco M, Changes in doxorubicin distribution and toxicity in mice pretreated with the cyclosporin analogue SDZ PSC 833. Cancer Chemother Pharmacol 1995;36:335-40
  • Meissner K, Jedlitschky G, Meyer zu Schwabedissen H, Modulation of multidrug resistance P-glycoprotein 1 (ABCB1) expression in human heart by hereditary polymorphisms. Pharmacogenetics 2004;14:381-5
  • Grube M, Kock K, Oswald S, Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 2006;80:607-20
  • Grube M, Meyer zu Schwabedissen HE, Prager D, Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation 2006;113:1114-22
  • Rigault C, Dias JV, Demarquoy J, Characteristics of L-carnitine import into heart cells. Biochimie 2008;90:542-6
  • Rosic M, Pantovic S, Lucic A, Kinetics of thyroxine (T(4)) and triiodothyronine (T(3)) transport in the isolated rat heart. Exp Physiol 2001;86:13-18
  • van der Deure WM, Peeters RP, Visser TJ. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol 2010;44:1-11
  • Delozier TC, Kissling GE, Coulter SJ, Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab Dispos 2007;35:682-8
  • Michaud V, Frappier M, Dumas MC, Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism. PLoS One 2010; published online 14 December 2010; doi: 10.1371/journal.pone.0015666
  • Liu KH, Kim MG, Lee DJ, Characterization of ebastine, hydroxyebastine, and carebastine metabolism by human liver microsomes and expressed cytochrome P450 enzymes: major roles for CYP2J2 and CYP3A. Drug Metab Dispos 2006;34:1793-7
  • Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008;40:553-624
  • Mordente A, Minotti G, Martorana GE, Anthracycline secondary alcohol metabolite formation in human or rabbit heart: biochemical aspects and pharmacologic implications. Biochem Pharmacol 2003;66:989-98
  • Susan-Resiga D, Bentley AT, Lynx MD, Zidovudine inhibits thymidine phosphorylation in the isolated perfused rat heart. Antimicrob Agents Chemother 2007;51:1142-9
  • Thum T, Borlak J. Testosterone, cytochrome P450, and cardiac hypertrophy. FASEB J 2002;16:1537-49
  • Wang JF, Yang Y, Sullivan MF, Induction of cardiac cytochrome p450 in cocaine-treated mice. Exp Biol Med (Maywood) 2002;227:182-8
  • Jenkins CM, Cedars A, Gross RW. Eicosanoid signalling pathways in the heart. Cardiovasc Res 2009;82:240-9
  • Nithipatikom K, Gross GJ. Review article: epoxyeicosatrienoic acids: novel mediators of cardioprotection. J Cardiovasc Pharmacol Ther 2010;15:112-19
  • Kaspera R, Totah RA. Epoxyeicosatrienoic acids: formation, metabolism and potential role in tissue physiology and pathophysiology. Expert Opin Drug Metab Toxicol 2009;5:757-71
  • Lafite P, Dijols S, Zeldin DC, Selective, competitive and mechanism-based inhibitors of human cytochrome P450 2J2. Arch Biochem Biophys 2007;464:155-68
  • Yu GG, Zeng XJ, Wang HX, Cytochrome P450 2J3/epoxyeicosatrienoic acids mediate the cardioprotection induced by ischaemic post-conditioning, but not preconditioning, in the rat. Clin Exp Pharmacol Physiol 2011;38;63-70
  • Walles M, Thum T, Levsen K, Verapamil metabolism in distinct regions of the heart and in cultures of cardiomyocytes of adult rats. Drug Metab Dispos 2001;29:761-8
  • Mordente A, Meucci E, Silvestrini A, New developments in anthracycline-induced cardiotoxicity. Curr Med Chem 2009;16:1656-72
  • Minotti G, Menna P, Salvatorelli E, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185-229
  • Forrest GL, Gonzalez B, Tseng W, Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res 2000;60:5158-64
  • Platel D, Bonoron-Adele S, Robert J. Role of daunorubicinol in daunorubicin-induced cardiotoxicity as evaluated with the model of isolated perfused rat heart. Pharmacol Toxicol 2001;88:250-4
  • Pouna P, Bonoron-Adele S, Gouverneur G, Evaluation of anthracycline cardiotoxicity with the model of isolated, perfused rat heart: comparison of new analogues versus doxorubicin. Cancer Chemother Pharmacol 1995;35:257-61
  • Kang W, Weiss M. Modeling the metabolism of idarubicin to idarubicinol in rat heart: effect of rutin and phenobarbital. Drug Metab Dispos 2003;31:462-8
  • Zhang Y, El-Sikhry H, Chaudhary KR, Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 2009;297:H37-46
  • Salvatorelli E, Menna P, Gianni L, Defective taxane stimulation of epirubicinol formation in the human heart: insight into the cardiac tolerability of epirubicin-taxane chemotherapies. J Pharmacol Exp Ther 2007;320:790-800
  • Salvatorelli E, Menna P, Lusini M, Doxorubicinolone formation and efflux: a salvage pathway against epirubicin accumulation in human heart. J Pharmacol Exp Ther 2009;329:175-84
  • Kalabus JL, Sanborn CC, Jamil RG, Expression of the anthracycline-metabolizing enzyme carbonyl reductase 1 in hearts from donors with Down syndrome. Drug Metab Dispos 2010;38:2096-9
  • Scherschel JA, Rubart M. Cardiovascular imaging using two-photon microscopy. Microsc Microanal 2008;14:492-506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.