738
Views
141
CrossRef citations to date
0
Altmetric
Reviews

Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems

, &
Pages 47-69 | Published online: 19 Nov 2011

Bibliography

  • Medina C, Santos-Martinez MJ, Radomski A, Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 2007;150:552-8
  • Tang MF, Lei L, Guo SR, Recent progress in nanotechnology for cancer therapy. Chin J Cancer 2010;8:775-80
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008;3:133-49
  • Leucuta SE. Nanotechnology for delivery of drugs and biomedical applications. Curr Clin Pharmacol 2010;5:257-80
  • Jain KK. Role of nanobiotechnology in the development of personalized medicine. Nanomedicine (Lond) 2009;4:249-52
  • Bharali DJ, Khalil M, Gurbuz M, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 2009;4:1-7
  • Yoshioka Y, Yoshikawa T, Tsutsumi Y. Nano-safety science for assuring the safety of nanomaterials. Nippon Eiseigaku Zasshi 2010;65:487-92
  • Dhawan A, Sharma V. Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 2010;398:589-605
  • Oberdoster G. Safety assessment for nanotechnology and nanomedicine: concept of nanotoxicology. J Intern Med 2009;267:89-105
  • Oberdorster G, Maynard A, Donaldson K, Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2:8
  • Alexis F, Pridgen EM, Langer R, Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol 2010;55-86
  • Farokhzad OC, Cheng J, Teply BA, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006;103:6315-20
  • Youns M, Hoheisel JD, Efferth T. Therapeutic and Diagnostic Applications of Nanoparticles. Curr Drug Targets 2010;12:357-65
  • Puri A, Loomis K, Smith B, Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009;26:523-80
  • Luo H, Li J, Chen X. Antitumor effect of N-succinyl-chitosan nanoparticles on K562 cells. Biomed Pharmacother 2010;64:521-6
  • Hobel S, Aigner A. Nonviral delivery platform for therapeutic RNAi: pegylated siRNA/cationic liposome complexes for targeting of the proto-oncogene bcl-2. Future Oncol 2009;5:13-17
  • Mikhaylova M, Stasinopoulos I, Kato Y, Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther 2009;16:217-26
  • Podesta JE, Kostarelos K. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery. Methods Enzymol 2009;464:343-54
  • Aumelas A, Serrero A, Durand A, Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems. Colloids Surf B Biointerfaces 2007;59:74-80
  • Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 2010;58:1423-30
  • Bisht S, Maitra A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:415-25
  • Simi CK, Emilia Abraham T. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst Eng 2007;30:173-80
  • Shen C, Brozena AH, Wang Y. Double-walled carbon nanotubes: challenges and opportunities. Nanoscale 2010;3:503-18
  • Tran MA, Smith CD, Kester M, Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 2008;14:3571-81
  • Cloninger M. Dendrimers and protein cages as nanoparticles in drug delivery. Drug Discov Today 2004;9:111-12
  • Caminade AM, Majoral JP. Dendrimers and nanotubes: a fruitful association. Chem Soc Rev 2010;39:2034-47
  • Thakare VS, Das M, Jain AK, Carbon nanotubes in cancer theragnosis. Nanomedicine (Lond) 2010;5:1277-301
  • Huang N, Wang H, Zhao J, Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers Surg Med 2010;42:638-48
  • Kah JC, Wong KY, Neoh KG, Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J Drug Target 2009;17:181-93
  • Melancon MP, Lu W, Yang Z, In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 2008;7:1730-9
  • Hauck TS, Chan WC. Gold nanoshells in cancer imaging and therapy: towards clinical application. Nanomedicine (Lond) 2007;2:735-8
  • Ji X, Shao R, Elliott AM, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C Nanomater Interfaces 2007;111:6245
  • Yang C, Rait A, Pirollo KF, Nanoimmunoliposome delivery of superparamagnetic iron oxide markedly enhances targeting and uptake in human cancer cells in vitro and in vivo. Nanomedicine 2008;4:318-29
  • Rhyner MN, Smith AM, Gao X, Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine (Lond) 2006;1:209-17
  • Tran MA, Watts RJ, Robertson GP. Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res 2009;22:388-99
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238-52
  • Balazs DA, Godbey W. Liposomes for use in gene delivery. J Drug Deliv 2011;2011:326497
  • Park YS. Tumor-directed targeting of liposomes. Biosci Rep 2002;22:267-81
  • Farhood HGX, Son K, Yang Y-Y, Cationic Liposomes for Direct Gene Transfer in Therapy of Cancer and Other Diseases†. Gene Therapy for Neoplastic Diseases. Ann NY Acad Sci 1994;716:23-35
  • Dadashzadeh S, Mirahmadi N, Babaei MH, Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge. J Control Release 2010;148:177-86
  • Felgner PL, Gadek TR, Holm M, Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987;84:7413-17
  • Landen CN Jr, Chavez-Reyes A, Bucana C, Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65:6910-18
  • Miller CR, Bondurant B, McLean SD, Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 1998;37:12875-83
  • Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine based approches for the delivery of siRNA in cancer. J Intern Med 2009;267:44-53
  • Gewirtz AM. RNA targeted therapeutics for hematologic malignancies. Blood Cells Mol Dis 2007;38:117-19
  • Spagnou S, Miller AD, Keller M. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 2004;43:13348-56
  • Akar U, Chaves-Reyez A, Barria M, Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 2008;4:669-79
  • Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 2008;3:21-9
  • Yu D, Peng P, Dharap SS, Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J Control Release 2005;110:90-102
  • Johansen PB. Doxorubicin pharmacokinetics after intravenous and intraperitoneal administration in the nude mouse. Cancer Chemother Pharmacol 1981;5:267-70
  • Lindner LH, Eichhorn ME, Eibl H, Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 2004;10:2168-78
  • Alberts DS, Garcia DJ. Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 1997;54(Suppl 4):30-5
  • Alberts DS, Liu PY, Wilczynski SP, Randomized trial of pegylated liposomal doxorubicin (PLD) plus carboplatin versus carboplatin in platinum-sensitive (PS) patients with recurrent epithelial ovarian or peritoneal carcinoma after failure of initial platinum-based chemotherapy (Southwest Oncology Group Protocol S0200). Gynecol Oncol 2008;108:90-4
  • Holloway RW, Finkler NJ, Nye LP, Doxil and gemcitabine combination therapy for recurrent ovarian cancer: results of a phase II trial. 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 2004;22:5090
  • Muggia FM, Hainsworth JD, Jeffers S, Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997;15:987-93
  • Muggia FM. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs 1997;54(Suppl 4):22-9
  • Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 2001;6:66-77
  • Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Nanoparticles and the immune system. Endocrinology 2010;151:458-65
  • Dokka S, Toledo D, Shi X, Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 2000;17:521-5
  • Lv H, Zhang S, Wang B, Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006;114:100-9
  • Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007;59:164-82
  • Dokka S TD, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 2000;17:521-5
  • Filion MaP NC. Major limitations in the use of cationic liposomes for DNA delivery. Int J Pharm 1998;162:159-70
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006;1:297-315
  • Larocque J, Bharali DJ, Mousa SA. Cancer detection and treatment: the role of nanomedicine. Mol Biotechnol 2003;42:358-66
  • Berry G, Billingham M, Alderman E, The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi's sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol 1998;9:711-16
  • Perez AT, Domenech GH, Frankel C, Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest 2002;20(Suppl 2):22-9
  • Goram AL, Richmond PL. Pegylated liposomal doxorubicin: tolerability and toxicity. Pharmacotherapy 2001;21:751-63
  • Dhaneshwar SS, Kandpal M, Gairola N, Kadam SS. Dextran: a promising macromolecular drug carrier. Indian J Pharm Sci 2006;68:705-14
  • Gervelas C, Avramoglou T, Crepin M, Growth inhibition of human melanoma tumor cells by the combination of sodium phenylacetate (NaPA) and substituted dextrans and one NaPA-dextran conjugate. Anticancer Drugs 2002;13:37-45
  • Ichinose K, Tomiyama N, Nakashima M, Antitumor activity of dextran derivatives immobilizing platinum complex (II). Anticancer Drugs 2000;11:33-8
  • Lam W, Leung CH, Chan HL, Toxicity and DNA binding of dextran-doxorubicin conjugates in multidrug-resistant KB-V1 cells: optimization of dextran size. Anticancer Drugs 2000;11:377-84
  • Shrivastava SK, Jain DK, Trivedi P. Dextrans–potential polymeric drug carriers for suprofen. Pharmazie 2003;58:804-6
  • Porter KA, Blackburn GL, Bistrian BR. Safety of iron dextran in total parenteral nutrition: a case report. J Am Coll Nutr 1988;7:107-10
  • Dhaneshwar S, Kandpal M, Gairola N, Kadam SS. Dextran: a promising macromolecular drug carrier. Indian J Pharm Sci 2006;68:705-14
  • Darrell B, Phillip O, Buncke J, Harry J. Dextran-induced acute renal failure after microvascular muscle transplantation. Plast Reconstr Surg 2001;108:2057-60
  • Hawker CJ, Wooley KL. The convergence of synthetic organic and polymer chemistries. Science 2005;309:1200-5
  • Jain R, Shah NH, Malick AW, Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm 1998;24:703-27
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55:329-47
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21:2475-90
  • Wickline SA, Neubauer AM, Winter PM, Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007;25:667-80
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 2006;17:247-89
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102
  • Kitchell JP, Wise DL. Poly(lactic/glycolic acid) biodegradable drug-polymer matrix systems. Methods Enzymol 1985;112:436-48
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28:5-24
  • Musumeci T, Ventura CA, Giannone I, PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm 2006;325:172-9
  • Musumeci T, Vicari L, Ventura CA, Lyoprotected nanosphere formulations for paclitaxel controlled delivery. J Nanosci Nanotechnol 2006;6:3118-25
  • Saxena V, Sadoqi M, Shao J. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int J Pharm 2006;308:200-4
  • Vorp DA, Maul T, Nieponice A. Molecular aspects of vascular tissue engineering. Front Biosci 2005;10:768-89
  • Lim HJ, Nam HY, Lee BH, A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnol Prog 2007;23:693-7
  • Semete B, Booysen L, Lemmer Y, In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 2010;6:662-71
  • Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 2011;40:173-90
  • Medina SH, El-Sayed ME. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009;109:3141-57
  • Nanjwade BK, Bechra HM, Derkar GK, Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009;38:185-96
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 2005;57:2106-29
  • Surendiran A, Sandhiya S, Pradhan SC, Novel applications of nanotechnology in medicine. Indian J Med Res 2009;130:689-701
  • Chandrasekar D, Sistla R, Ahmad FJ, The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007;28:504-12
  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 2009;71:445-62
  • Balogh L, Swanson DR, Tomalia DA, Dendrime-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2000;1:18-21
  • Bhadra D, Bhadra S, Jain S, A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 2003;257:111-24
  • Chauhan AS, Sridevi S, Chalasani KB, Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 2003;90:335-43
  • Jevprasesphant R, Penny J, Jalal R, The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 2003;252:263-6
  • Fischer D, Li Y, Ahlemeyer B, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24:1121-31
  • El-Sayed M, Ginski M, Rhodes C, Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release 2002;81:355-65
  • Bourne N, Stanberry LR, Kern ER, Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob Agents Chemother 2000;44:2471-4
  • Liu Z, Tabakman S, Welsher K, Carbon Nanotubes in Biology and Medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85-120
  • Liu Z, Chen K, Davis C, Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68:6652-60
  • Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 2010;21:025102
  • Liu Z, Fan AC, Rakhra K, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed Engl 2009;48:7668-72
  • Singh S, Nalwa HS. Nanotechnology and health safety–toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol 2007;7:3048-70
  • Radomski A, Jurasz P, Alonso-Escolano D, Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146:882-93
  • Sayes CM, Liang F, Hudson JL, Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 2006;161:135-42
  • Shvedova AA, Castranova V, Kisin ER, Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003;66:1909-26
  • Warheit DB, Laurence BR, Reed KL, Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004;77:117-25
  • Ravichandran P, Periyakaruppan A, Sadanandan B, Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J Biochem Mol Toxicol 2009;23:333-44
  • Reddy AR, Reddy YN, Krishna DR, Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation. Environ Toxicol 2010; [Epub ahead of print]
  • Muller J, Huaux F, Moreau N, Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005;207:221-31
  • Bhattacharya R, Mukherjee P. Biological properties of "naked" metal nanoparticles. Adv Drug Deliv Rev 2008;60:1289-306
  • Geddes CD, Parfenov A, Lakowicz JR. Photodeposition of silver can result in metal-enhanced fluorescence. Appl Spectrosc 2003;57:526-31
  • Loo C, Lin A, Hirsch L, Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004;3:33-40
  • Niidome T, Yamagata M, Okamoto Y, PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006;114:343-7
  • Kawano T, Yamagata M, Takahashi H, Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J Control Release 2006;111:382-9
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49:N309-15
  • O'Neal DP, Hirsch LR, Halas NJ, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209:171-6
  • Murphy CJ, Gole AM, Stone JW, Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 2008;41:1721-30
  • Zwiorek K, Kloeckner J, Wagner E, Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci 2005;7:22-8
  • Zamiri R, Azmi BZ, Sadrolhosseini AR, Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine 2011;6:71-5
  • Ahmad N, Sharma S, Singh VN, Biosynthesis of silver nanoparticles from desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011;2011:454090
  • Keelan JA. Nanotoxicology: nanoparticles versus the placenta. Nat Nanotechnol 2011;6:263-4
  • Chang C. The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun 2010;34:J234-46
  • Zhang L, Yu F, Cole AJ, Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J 2009;11:693-9
  • Shahverdi AR, Fakhimi A, Shahverdi HR, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007;3:168-71
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275:177-82
  • Rutberg FG, Dubina MV, Kolikov VA, Effect of silver oxide nanoparticles on tumor growth in vivo. Dokl Biochem Biophys 2008;421:191-3
  • Hussain SM, Hess KL, Gearhart JM, In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005;19:975-83
  • Neuberger T, Schopfa B, Hofmannb H, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magnetism Magn Mater 2005;293:483-96
  • Hofmann-Amtenbrink M, Rechenberg Von B, Hofmann H. Superparamagnetic nanoparticles for biomedical applications. Transworld Research Network 2009;121-49
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-4021
  • Saboktakin MR, Maharramov A, Ramazanov MA. Synthesis and characterization of superparamagnetic nanoparticles coated with carboxymethyl starch (CMS) for magnetic resonance imaging technique. J Carbohydr Polym 2009;78(2):292-5
  • Meng J, Fan J, Galiana G, LHR- Functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. [J] Mat Sci Eng C-BioS. Science 2009;29:1467-79
  • Torchilin VP. Drug targeting. Eur J Pharm Sci 2000;11(Suppl 2):S81-91
  • Rudge S, Peterson C, Vessely C, Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release 2001;74:335-40
  • Strom V, Hultenby K, Gruttner C, B, Holgersson J, A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer. Nanotechnology 2004;15:457-66
  • Buyukhatipoglu K, Clyne AM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 2011;96:186-95
  • Smith AM, Dave S, Nie S, Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 2006;6:231-44
  • Tang M, Xing T, Zeng J, Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 2008;116:915-22
  • Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006;114:165-72
  • Chan WC, Maxwell DJ, Gao X, Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002;13:40-6
  • Colton HM, Falls JG, Ni H, Visualization and quantitation of peroxisomes using fluorescent nanocrystals: treatment of rats and monkeys with fibrates and detection in the liver. Toxicol Sci 2004;80:183-92
  • Dubertret B, Skourides P, Norris DJ, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002;298:1759-62
  • Gao X, Cui Y, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969-76
  • Lidke DS, Nagy P, Heintzmann R, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004;22:198-203
  • Wu X, Liu H, Liu J, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003;21:41-6
  • Rudge SR, Kurtz TL, Vessely CR, Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 2000;21:1411-20
  • Scherer F, Anton M, Schillinger U, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002;9:102-9
  • Choi AO, Cho SJ, Desbarats J, Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 2007;5:1
  • Hoshino A, Fujioka K, Oku T, Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 2004;48:985-94
  • Shiohara A, Hoshino A, Hanaki K, On the cyto-toxicity caused by quantum dots. Microbiol Immunol 2004;48:669-75
  • Hoshino A, Hanaki K, Suzuki K, Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 2004;314:46-53
  • El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009;2009:754810
  • Hall JB, Dobrovolskaia MA, Patri AK, Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2007;2:789-803
  • Murdock RC, Braydich-Stolle L, Schrand AM, Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008;101:239-53
  • Powers KW, Brown SC, Krishna VB, Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 2006;90:296-303
  • Barreto JA, O'Malley W, Kubeil M, Nanomaterials: applications in cancer imaging and therapy. Adv Mater 2011;23:H18-40
  • Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Manocha B, Margaritis A. Production and characterization of Œ ≥ -polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 2008;28:83-99
  • Borm P, Klaessig FC, Landry TD, Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 2006;90:23-32
  • Hall JBD, Patriak MA, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2007;2:789-803
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008;4:26-49
  • United States Pharmacopeia (United States Pharmacopeial Convention IURPT.
  • Li N, Sioutas C, Cho A, Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003;111:455-60
  • Dhawan A, Sharma V, Parmar D. Nanomaterials: a challenge for toxicologists. Nanotoxicology 2008;3:1-9
  • Gosens I, Post JA, de la Fonteyne LJ, Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 2010;7:37
  • Skebo JE, Grabinski CM, Schrand AM, Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 2007;26:135-41
  • Hatziantoniou S, Deli G, Nikas Y, Scanning electron microscopy study on nanoemulsions and solid lipid nanoparticles containing high amounts of ceramides. Micron 2007;38:819-23
  • Somani PR, Umeno M. Importance of transmission electron microscopy for carbon nanomaterials research. in Modern Research and Educational Topics in Microscopy (Number 3 of the Microscopy Book Series), Editors : A. Mendez-Vilas and J. Diaz, Formatex 2007;2:634-42
  • Berne BPR. Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics. Dover Publications; NY, USA: 2000
  • United States Pharmacopeia (United States Pharmacopeial Convention IBET.
  • Mickuviene I, Kirveliene V, Juodka B. Experimental survey of non-clonogenic viability assays for adherent cells in vitro. Toxicol In Vitro 2004;18:639-48
  • Decker T. Lohmann-Matthes, ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 1998;115:61-9
  • Hong S, Bielinska AU, Mecke A, Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 2004;15:774-82
  • Tuschl H, Schwab CE. Flow cytometric methods used as screening tests for basal toxicity of chemicals. Toxicol In Vitro 2004;18:483-91
  • Stone V, Shaw J, Brown DM, The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro 1998;12:649-59
  • Foucaud L, Wilson MR, Brown DM, Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 2007;174:1-9
  • Schins RP, Duffin R, Hohr D, Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol 2002;15:1166-73
  • Wilson MR, Lightbody JH, Donaldson K, Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 2002;184:172-9
  • Stone V, Johnston H, Schins RP. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 2009;39:613-26
  • Xiao GG, Wang M, Li N, Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 2003;278:50781-90
  • Landsiedel R, Kapp MD, Schulz M, Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations–many questions, some answers. Mutat Res 2009;681:241-58
  • Jacobsen NR, Pojana G, White P, Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 2008;49:476-87
  • Mroz RM, Schins RP, Li H, Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways. Eur Respir J 2008;31:241-51
  • Grainger DW. Nanotoxicity assessment: all small talk? Adv Drug Deliv Rev 2009;61:419-21
  • Home - Nanotechnology Characterization Lab. 2011. Available from: http://ncl.cancer.gov/ [Cited 2011 11]
  • Jang J, Lim DH, Choi IH. The impact of nanomaterials in immune system. Immune Netw 2010;10:85-91
  • Mohanraj VaC Y. Nanoparticles – a review. Trop J Pharm Res 2006;5:561-73
  • Tran MA, Gowda R, Sharma A, Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res 2008;68:7638-49
  • Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 2006;23:171-84
  • Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 2008;16:942-6
  • Gardikis K, Hatziantoniou S, Bucos M, New drug delivery nanosystem combining liposomal and dendrimeric technology (liposomal locked-in dendrimers) for cancer therapy. J Pharm Sci 2010;99:3561-71
  • Hirsch LR, Stafford RJ, Bankson JA, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549-54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.