416
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Streptomyces cytochromes P450: applications in drug metabolism

, &
Pages 1279-1294 | Published online: 06 Jun 2013

Bibliography

  • Ortiz de Montellano PR. Cytochrome P450: structure, mechanism and biochemistry. Kluwer Academic/Plenum Publishers, New York; 2005
  • Munro AW, Girvan HM, Mason AE, et al. What makes P450 tick? Trends Biochem Sci 2013;38:140-50
  • Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001;14:611-50
  • Guengerich FP. Uncommon P450-catalyzed reactions. Curr Drug Metab 2001;2:93-115
  • Timbrell J. Principles of biochemical toxicology. Taylor & Francis, London, UK: 2000
  • Zuber R, Anzenbacherová E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med 2002;6:189-98
  • Griffith Humphreys W, Unger SE. Safety assessment of drug metabolites: characterization of chemically stable metabolites. Chem Res Toxicol 2006;19:1564-9
  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291:1304-51
  • Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanisms and biochemistry. 3rd edition. Kluwer Academic/Plenum Publishers, New York; 2005. p. 377-530
  • Wang K, Guengerich FP. Bioactivation of fluorinated 2-aryl-benzothiazole antitumor molecules by human cytochrome P450s 1A1 and 2W1 and deactivation by cytochrome P450 2S1. Chem Res Toxicol 2012;25:1740-51
  • Chuang SS, Helvig C, Taimi M, et al. CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes Ω- and (Ω-1)-hydroxylation of fatty acids. J Biol Chem 2004;279:6305-14
  • Kalsotra A, Turman CM, Kikuta Y, Strobel HW. Expression and characterization of human cytochrome P450 4F11: putative role in the metabolism of therapeutic drugs and eicosanoids. Toxicol Appl Pharmacol 2004;199:295-304
  • Guengerich FP, Cheng Q. Orphans in the human cytochrome p450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 2011;63:684-99
  • Shimada T, Yamazaki H, Mimura M, et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal livers and adult lungs. Drug Metab Dispos 1996;24:515-22
  • Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002;34:83-448
  • Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemical: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994;270:414-23
  • Treluyer JM, Gueret G, Cheron G, et al. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 1997;7:441-52
  • Shimada T, Misono KS, Guengerich FP. Human liver microsomal cytochrome P450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. J Biol Chem 1986;261:909-21
  • Kim MJ, Bertino JS, Gaedigk A, et al. Effect of sex and menstrual cycle phase on cytochrome P450 2C19 activity with omeprazole used as a biomarker. Clin Pharmacol Ther 2002;72:192-9
  • Yamazaki H, Shimada T. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys 1997;346:161-9
  • Distlerath LM, Reilly PEB, Martin MV, et al. Purification and characterization of the human liver cytochrome P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem 1985;260:9057-67
  • Guengerich FP. Mechanism-based inactivation of human liver cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol 1990;3:363-71
  • Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002;30:1108-14
  • Wienkers LC. Problems associated with in vitro assessment of drug inhibition of CYP3A4 and other P450 enzymes and its impact on drug discovery. J Pharmacol Toxicol Methods 2001;45:79-84
  • Plant NJ, Gibson GG. Evaluation of the toxicological relevance of CYP3A4 induction. Curr Opin Drug Discov Devel 2003;6:50-6
  • Nagai F, Kato E, Tamura HO. Oxidative stress induces GSTP1 and CYP3A4 expression in the human erythroleukemia cell line, K562. Biol Pharm Bull 2004;27:492-5
  • Shou M, Krausz KW, Gonzalez FJ Helboin HV. Metabolic activation of the potent carcinogen dibenzo[a,h]anthracene by cDNA-expressed human cytochrome P450. Arch Biochem Biophys 1996;328:201-7
  • Ekins S, Wrighton SA. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab Rev 1999;31:719-54
  • Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002;64:1579-89
  • Tang W. The metabolism of diclofenac–enzymology and toxicology perspectives. Curr Drug Metab 2003;4:319-29
  • Bell-Parikh LC, Guengerich FP. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. J Biol Chem 1999;274:23833-40
  • Jimenez-Lopez JM, Cederbaum AI. CYP2E1-dependent oxidative stress and toxicity: role in ethanol-induced liver injury. Expert Opin Drug Metab Toxicol 2005;1:671-85
  • Azerad R. Microbial models for drug metabolism. Adv Biochem Eng Biotechnol 1999;63:169-217
  • Clark AM, Hufford CD. Use of microorganisms for the study of drug metabolisms: an update. Med Res Rev 1991;11:473-501
  • Sariaslani FS, Kunz DA. Induction of cytochrome P-450 in Streptomyces griseus by soybean flour. Biochem Biophys Res Commun 1986;141:405-10
  • Trower MK, Sariaslani FS, Kitson FG. Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem Biophys Res Commun 1988;157:1417-22
  • Sariaslani FS, McGee LR, Trower MK, Kitson FG. Lack of regio- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P-450soy. Biochem Biophys Res Commun 1990;170:456-61
  • Sariaslani FS, Stahl RG. Activation of promutagenic chemicals by Streptomyces griseus containing cytochrome P450SOY. Biochem Biophys Res Commun 1990;166:743-9; 42
  • Trower MK, Sariaslani FS, O'Keefe DP. Purification and characterization of a soybean flour-induced cytochrome P-450 from Streptomyces griseus. J Bacteriol 1989;171:1781-7
  • Trower MK, Lenstra R, Omer C, et al. Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxinsoy (soyB) from Streptomyces griseus. Mol Microbiol 1992;2125-34
  • Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994;47:1969-79
  • Kittelmann M, Lattmann R, Ghisalba O. Preparation of 10,11-epoxy-carbamazepine and 10,11-dihydro-10-hydroxy-carbamazepine by microbial epoxidation and hydroxylation. Biosci Biotechnol Biochem 1993;57:1589-90
  • Brannon DR, Horton HR, Svoboda GH. Microbial hydroxylation of acronycine. J Med Chem 1974;17:653-4
  • Dayer P, Desmeules J, Leemann T, Striberni R. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem Biophys Res Commun 1988;152:411-16
  • Caraco Y, Tateishi T, Guengerich FP, Wood AJ. Microsomal codeine N-demethylation: cosegregation with cytochrome P4503A4 activity. Drug Metab Dispos 1996;24:761-4
  • Yue QY, Säwe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol 1997;52:41-7
  • Kunz DA, Reddy GS, Vatvars A. Identification of transformation products arising from bacterial oxidation of codeine by Streptomyces griseus. Appl Environ Microbiol 1985;50:831-6
  • Hufford CD, Collins CC, Clark AM. Microbial transformations and 13C-NMR analysis of colchicine. J Pharm Sci 1979;68:1239-43
  • Koch KM, Corrigan BW, Manzo J, et al. Alosetron repeat dose pharmacokinetics, effects on enzyme activities, and influence of demographic factors. Aliment Pharmacol Ther 2004;20:223-3053
  • Knaggs AR, Cable KM, Cannell RJP, et al. Biotransformation of alosetron: mechanism of hydantoin formation. Tetrahedron Lett 1995;36:477-80
  • Cannell RJ, Knaggs AR, Dawson MJ, et al. Microbial biotransformation of the angiotensin II antagonist GR117289 by Streptomyces rimosus to identify a mammalian metabolite. Drug Metab Dispos 1995;23:724-9
  • Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther 1997;73:67-74
  • Griffiths DA, Best DJ, Jezequel SG. The screening of selected microorganisms for use as models of mammalian drug metabolism. Appl Microbiol Biotechnol 1991;35:373-81
  • Cannell RJ, Rashid T, Ismail IM, et al. Novel metabolites of warfarin produced by Beauveria bassiana and Streptomyces rimosus: a novel application of HPLC-NMR. Xenobiotica 1997;27:147-57
  • Nelson DR. A world of cytochromes P450. Philos Trans R Soc Lond B Biol Sci 2013;368(1612):1471-2970
  • Kalb VF, Woods CW, Turi TG, et al. Primary structure of P450 lanosterol demethylase gene from Sacchaaromyces cerevisiae. DNA 1987;6:529-37
  • Kelly SL, Kelly DE. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc Lond B Biol Sci 2013;368(1612):1-17
  • Nelson DR. The Cytochrome P450 Homepage. Hum Genomics 2009;4:59-65
  • Miller WL. Steroidogenic enzymes. Endocr Dev 2008;13:1-18; 63
  • Lepesheva GI, Waterman MR. Structural basis for conservation in the CYP51 family. Biochem Biophys Acta 2011;1814:88-93
  • Bellamine A, Mangla AT, Nes WD, Waterman MR. Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1999;96:8937-42
  • Jackson CJ, Lamb DC, Marczylo TH, et al. Conservation and cloning of CYP51: a sterol 14 alpha-demethylase from Mycobacterium smegmatis. Biochem Biophys Res Commun 2003;301:558-63
  • Lamb DC, Skaug T, Song HL, et al. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J Biol Chem 2002;277:24000-5
  • Shafiee A, Hutchinson CR. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J Bacteriol 1988;170:1548-53
  • Xue Y, Wilson D, Zhao L, et al. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem Biol 1998;5:661-7
  • Podust LM, Kim Y, Arase M, et al. The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. J Biol Chem 2003;278:12214-21
  • Podust LM, Bach H, Kim Y, et al. Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci 2004;13:255-68
  • Poulos TL. Cytochrome P450. Curr Opin Struct Biol 1995;5:767-74
  • Halpert JR, Domanski TL, Adali O, et al. Structure-function of cytochromes P450 and flavin-containing monooxygenases: implications for drug metabolism. Drug Metab Dispos 1998;26:1223-31
  • Sansen S, Yano JK, Reynald RL, et al. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 2007;282:14348-55
  • Williams PA, Cosme J, Vinkovic DM, et al. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004;305:683-6
  • Williams PA, Cosme J, Ward A, et al. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003;424:464-8
  • Reynald RL, Sansen S, Stout CD, Johnson EF. Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19. J Biol Chem 2012;287:44581-91
  • Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem 2006;281:7614-22
  • Ekroos M, Sjögren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 2006;103:13682-7
  • Xu LH, Fushinobu S, Takamatsu S, et al. Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J Biol Chem 2010;285:16844-53
  • Cupp-Vickery J, Anderson R, Hatziris Z. Crystal structures of ligand complexes of P450eryF exhibiting homotropic cooperativity. Proc Natl Acad Sci USA 2000;97:3050-5
  • Zhang D, Yang Y, Leakey JEA, Cerniglia CE. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 1996;138:221-6
  • Reinen J, van Leeuwen JS, Li Y, et al. Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space. Drug Metab Dispos 2011;39:1568-76
  • Griffiths DA, Brown DE, Jezequel SG. Metabolism of xenobiotics by Beauveria bassiana. Xenobiotica 1993;23:1085-100
  • Valenta JR, Dicuollo CJ, Fare LR, et al. Microbial transformation of methyl 5(6)-butyl-2-benzimidazolecarbamate. Appl Microbiol 1994;28:995-8
  • Clark AM, Hufford CD, McChesney JD. Primaquine: metabolism by microorganisms and 13C nuclear magnetic resonance assignments. Antimicrob Agents Chemother 1981;19:337-41
  • Lee IS, elSohly HN, Croom EM, Hufford CD. Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. J Nat Prod 1989;52:337-41
  • Hansen EB Jr, Cho BP, Korfmacher WA, Cerniglia CE. Fungal transformations of antihistamines: metabolism of brompheniramine, chlorpheniramine, and pheniramine to N-oxide and N-demethylated metabolites by the fungus Cunninghamella elegans. Xenobiotica 1995;25:1081-92
  • Hufford CD, Baker JK, Clark AM. Metabolism of phencyclidine by microorganisms. J Pharm Sci 1981;70:155-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.