282
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Evaluating pharmacokinetics and toxicity of luminescent quantum dots

, , &
Pages 1265-1277 | Published online: 12 Jun 2013

Bibliography

  • Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003;300:1434-6
  • Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013-16
  • Erogbogbo F, Yong KT, Roy I, et al. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2008;2:873-8
  • Wang Q, Bao Y, Ahire J, et al. Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthcare Mater 2012;2:459-66
  • Narayanaswamy A, Feiner LF, Meijerink A, et al. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots. ACS Nano 2009;3:2539-46
  • Ben Bakir B, Seassal C, Letartre X, et al. Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" photonic crystal. Opt Express 2006;14:9269-76
  • Zhuo S, Shao M, Lee ST. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 2012;6:1059-64
  • Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 2012;22:4732-40
  • Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001;19:631-5
  • Li L-L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 2012;22:2971-9
  • Yong K-T, Qian J, Roy I, et al. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Lett 2007;7:761-5
  • Chan WCW, Maxwell DJ, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002;13:40-6
  • Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphene quantum dots. Adv Mater 2012;24:5333-8
  • Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004;22:93-7
  • Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 2012;41:4067-85
  • Cooper DR, Dimitrijevic NM, Nadeau JL. Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production. Nanoscale 2010;2:114-21
  • Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002;298:1759-62
  • Kim JS, Cho KJ, Tran TH, et al. In vivo NIR imaging with CdTe/CdSe quantum dots entrapped in PLGA nanospheres. J Colloid Interface Sci 2011;353:363-71
  • Allen PM, Walker BJ, Bawendi MG. Mechanistic insights into the formation of InP quantum dots. Angew Chem Int Ed 2010;49:760-2
  • Nag A, Sarma DD. Solvothermal synthesis of InP quantum dots. J Nanosci Nanotechnol 2009;9:5633-6
  • Chibli H, Carlini L, Park S, et al. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 2011;3:2552-9
  • Dong Y, Wang R, Li G, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 2012;84:6220-4
  • Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 2009;48:4598-601
  • Qu S, Wang X, Lu Q, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed 2012;51:12215-18
  • Liu JH, Yang ST, Chen XX, et al. Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity. Curr Drug Metab 2012;13:1046-56
  • Chen X, Zhou X, Han T, et al. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano 2012;7:531-7
  • Jin SH, Kim DH, Jun GH, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2013;7:1239-45
  • Garoufalis CS, Zdetsis AD, Grimme S. High level ab initio calculations of the optical gap of small silicon quantum dots. Phys Rev Lett 2001;87:276402
  • Wang LW, Zunger A. Dielectric constants of silicon quantum dots. Phys Rev Lett 1994;73:1039-42
  • Klein S, Zolk O, Fromm MF, et al. Functionalized silicon quantum dots tailored for targeted siRNA delivery. Biochem Biophys Res Commun 2009;387:164-8
  • Gao X, Yang L, Petros JA, et al. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005;16:63-72
  • Erogbogbo F, Tien CA, Chang CW, et al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem 2011;22:1081-8
  • Gao X, Chung LW, Nie S. Quantum dots for in vivo molecular and cellular imaging. Methods Mol Biol 2007;374:135-45
  • Zhang C-y, Hu J. Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 2010;82:1921-7
  • Hu M, Yan J, He Y, et al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2009;4:488-94
  • Yong KT, Roy I, Law WC, et al. Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging. Chem Commun 2010;46:7136-8
  • Yong KT, Roy I, Ding H, et al. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 2009;5:1997-2004
  • Smith AM, Duan H, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 2008;60:1226-40
  • Hong G, Robinson JT, Zhang Y, et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed 2012;51:9818-21
  • Yang HN, Park JS, Woo DG, et al. Transfection of VEGF(165) genes into endothelial progenitor cells and in vivo imaging using quantum dots in an ischemia hind limb model. Biomaterials 2012;33:8670-84
  • Gao X, Chen J, Wu B, et al. Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjugate Chem 2008;19:2189-95
  • Yong K-T, Law W-C, Hu R, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 2013;42:1236-50
  • Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006;114:165-72
  • Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 2011;85:707-20
  • Yaghini E, Seifalian AM, MacRobert AJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine 2009;4:353-63
  • Samia ACS, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 2003;125:15736-7
  • Bakalova R, Ohba H, Zhelev Z, et al. Quantum dots as photosensitizers? Nat Biotech 2004;22:1360-1
  • Godt J, Scheidig F, Grosse-Siestrup C, et al. The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 2006;1:22
  • Rzigalinski BA, Strobl JS. Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 2009;238:280-8
  • Koos BJ, Longo LD. Mercury toxicity in the pregnant woman, fetus, and newborn infant. A review. Am J Obstet Gynecol 1976;126:390-409
  • Goyer RA. Lead toxicity: current concerns. Environ Health Perspect 1993;100:177-87
  • Fischer HC, Liu L, Pang KS, et al. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 2006;16:1299-305
  • Ballou B, Ernst LA, Andreko S, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjugate Chem 2007;18:389-96
  • Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconjugate Chem 2004;15:79-86
  • Chen N, He Y, Su Y, et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012;33:1238-44
  • Su Y, Peng F, Jiang Z, et al. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials 2011;32:5855-62
  • Valizadeh A, Mikaeili H, Samiei M, et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012;7:480
  • Cho SJ, Maysinger D, Jain M, et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007;23:1974-80
  • Choi HS, Ipe BI, Misra P, et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 2009;9:2354-9
  • Ye L, Yong K-T, Liu L, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nano 2012;7:453-8
  • Lovric J, Bazzi HS, Cuie Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005;83:377-85
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of eemiconductor quantum dots. Nano Lett 2003;4:11-18
  • Tsoi KM, Dai Q, Alman BA, et al. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 2013;46:662-71
  • Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005;5:331-8
  • Liu W, Choi HS, Zimmer JP, et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J Am Chem Soc 2007;129:14530-1
  • Lee J, Kim J, Park E, et al. PEG-ylated cationic CdSe/ZnS QDs as an efficient intracellular labeling agent. Phys Chem Chem Phys 2008;10:1739-42
  • Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. J Nucl Med 2009;50:493-6
  • Xie R, Chen K, Chen X, et al. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res 2008;1:457-64
  • Schipper ML, Cheng Z, Lee S-W, et al. microPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007;48:1511-18
  • Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969-76
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165-70
  • Fitzpatrick JAJ, Andreko SK, Ernst LA, et al. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett 2009;9:2736-41
  • Hauck TS, Anderson RE, Fischer HC, et al. In vivo quantum-dot toxicity assessment. Small 2010;6:138-44
  • Ma N, Marshall AF, Gambhir SS, et al. Facile synthesis, silanization, and biodistribution of biocompatible quantum dots. Small 2010;6:1520-8
  • Smith BR, Cheng Z, De A, et al. Real-time intravital imaging of RGD−quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 2008;8:2599-606
  • Cai W, Shin D-W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6:669-76
  • Tiwari DK, Jin T, Behari J. Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats. Int J Nanomedicine 2011;6:463-75
  • Tada H, Higuchi H, Wanatabe TM, et al. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67:1138-44
  • Li L, Daou TJ, Texier I, et al. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 2009;21:2422-9
  • Yong KT, Ding H, Roy I, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009;3:502-10
  • Schipper ML, Iyer G, Koh AL, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009;5:126-34
  • Gao J, Chen K, Xie R, et al. Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small 2010;6:256-61
  • Gao J, Chen K, Xie R, et al. In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjugate Chem 2010;21:604-9
  • Gao J, Chen K, Luong R, et al. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 2012;12:281-6
  • Erogbogbo F, Yong K-T, Roy I, et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 2010;5:413-23
  • Park JH, Gu L, von Maltzahn G, et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009;8:331-6
  • Tu C, Ma X, House A, et al. PET imaging and biodistribution of silicon quantum dots in mice. ACS Med Chem Lett 2011;2:285-8
  • Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2011;8:281-90
  • King-Heiden TC, Wiecinski PN, Mangham AN, et al. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ Sci Technol 2009;43:1605-11
  • Truong L, Moody I, Stankus D, et al. Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish. Arch Toxicol 2011;85:787-98
  • Zhang W, Sun X, Chen L, et al. Toxicological effect of joint cadmium selenium quantum dots and copper ion exposure on zebrafish. Environ Toxicol Chem 2012;31:2117-23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.